ANN based Scaling of Rainfall Data for Urban Flood Simulations

Author(s):  
Vinay Ashok Rangari ◽  
K. Veerendra Gopi ◽  
Umamahesh V Nanduri ◽  
Roshan Bodile
2018 ◽  
Vol 20 (4) ◽  
pp. 784-797 ◽  
Author(s):  
Marija Ivković ◽  
Andrijana Todorović ◽  
Jasna Plavšić

Abstract Flood forecasting relies on good quality of observed and forecasted rainfall. In Serbia, the recording rain gauge network is sparse and rainfall data mainly come from dense non-recording rain gauges. This is not beneficial for flood forecasting in smaller catchments and short-duration events, when hydrologic models operating on subdaily scale are applied. Moreover, differences in rainfall amounts from two types of gauges can be considerable, which is common in operational hydrological practice. This paper examines the possibility of including daily rainfall data from dense observation networks in flood forecasting based on subdaily data, using the extreme flood event in the Kolubara catchment in May 2014 as a case study. Daily rainfall from a dense observation network is disaggregated to hourly scale using the MuDRain multivariate disaggregation software. The disaggregation procedure results in well-reproduced rainfall dynamics and adjusts rainfall volume to the values from the non-recording gauges. The fully distributed wflow_hbv model, which is under development as a forecasting tool for the Kolubara catchment, is used for flood simulations with two alternative hourly rainfall data. The results show an improvement when the disaggregated rainfall from denser network is used, thus indicating the significance of better representation of rainfall temporal and spatial variability for flood forecasting.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2306
Author(s):  
Heeseong Park ◽  
Gunhui Chung

As infrastructure and populations are highly condensed in megacities, urban flood management has become a significant issue because of the potentially severe loss of lives and properties. In the megacities, rainfall from the catchment must be discharged throughout the stormwater pipe networks of which the travel time is less than one hour because of the high impervious rate. For a more accurate calculation of runoff from the urban catchment, hourly or even sub-hourly (minute) rainfall data must be applied. However, the available data often fail to meet the hydrologic system requirements. Many studies have been conducted to disaggregate time-series data while preserving distributional statistics from observed data. The K-nearest neighbor resampling (KNNR) method is a useful application of the nonparametric disaggregation technique. However, it is not easy to apply in the disaggregation of daily rainfall data into hourly while preserving statistical properties and boundary continuity. Therefore, in this study, three-day rainfall patterns were proposed to improve reproducible ability of statistics. Disaggregated rainfall was resampled only from a group having the same three-day rainfall patterns. To show the applicability of the proposed disaggregation method, probability distribution and L-moment statistics were compared. The proposed KNNR method with three-day rainfall patterns reproduced better the characteristics of rainfall event such as event duration, inter-event time, and toral amount of rainfall event. To calculate runoff from urban catchment, rainfall event is more important than hourly rainfall depth itself. Therefore, the proposed stochastic disaggregation method is useful to hydrologic analysis, particularly in rainfall disaggregation.


2020 ◽  
Vol 588 ◽  
pp. 125028
Author(s):  
Afrin Hossain Anni ◽  
Sagy Cohen ◽  
Sarah Praskievicz

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1840 ◽  
Author(s):  
Li ◽  
Liu ◽  
Mei ◽  
Shao ◽  
Wang ◽  
...  

This study aims to better understand the impact of different building representations and mesh resolutions on urban flood simulations using the TELEMAC-2D model in idealized urban districts. A series of numerical models based on previous laboratory experiments was established to simulate urban flooding around buildings, wherein different building layouts (aligned and staggered) were modeled for different building representations: building–hole (BH), building–block (BB), and building–resistance (BR) methods. A sensitivity analysis of the Manning coefficient for building grids indicated that the unit-width discharge and water depth in building grids reduce as the Manning coefficient is less than 104 m-1/3⋅s. The simulated depths via the BH, BB, and BR methods were compared with the measured data in terms of three accuracy indicators: root mean square error, Pearson product–moment correlation coefficient, and Nash–Sutcliffe efficiency. Observing apparent discrepancies based on the hydrographs was difficult; however, some slight distinctions were observed based on the aforementioned three indicators. The sensitivity of 1, 2, and 5 cm mesh resolutions was also analyzed: results obtained using 1 cm resolution were better than those obtained using other resolutions. The complex flow regime around buildings was also investigated based on mesh resolution, velocity, and Froude number according to our results. This study provides key data regarding urban flood model benchmarks, focusing on the effect of different building representations and mesh resolutions.


2012 ◽  
Vol 470-471 ◽  
pp. 1-11 ◽  
Author(s):  
Albert S. Chen ◽  
Barry Evans ◽  
Slobodan Djordjević ◽  
Dragan A. Savić

2013 ◽  
Vol 68 (9) ◽  
pp. 1984-1993 ◽  
Author(s):  
Vincenza Notaro ◽  
Chiara Maria Fontanazza ◽  
Gabriele Freni ◽  
Valeria Puleo

Climate change and modification of the urban environment increase the frequency and the negative effects of flooding, increasing the interest of researchers and practitioners in this topic. Usually, flood frequency analysis in urban areas is indirectly carried out by adopting advanced hydraulic models to simulate long historical rainfall series or design storms. However, their results are affected by a level of uncertainty which has been extensively investigated in recent years. A major source of uncertainty inherent to hydraulic model results is linked to the imperfect knowledge of the rainfall input data both in time and space. Several studies show that hydrological modelling in urban areas requires rainfall data with fine resolution in time and space. The present paper analyses the effect of rainfall knowledge on urban flood modelling results. A mathematical model of urban flooding propagation was applied to a real case study and the maximum efficiency conditions for the model and the uncertainty affecting the results were evaluated by means of generalised likelihood uncertainty estimation (GLUE) analysis. The added value provided by the adoption of finer temporal and spatial resolution of the rainfall was assessed.


2019 ◽  
Author(s):  
CARLOS MARTÍNEZ ◽  
ARLEX SANCHEZ ◽  
ZORAN VOJINOVIC ◽  
OSCAR HERNANDEZ

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2421
Author(s):  
Nobuaki Kimura ◽  
Hirohide Kiri ◽  
Sachie Kanada ◽  
Iwao Kitagawa ◽  
Ikuo Yoshinaga ◽  
...  

Recent extreme weather events like the August 2016 flood disaster have significantly affected farmland in mid-latitude regions like the Tokachi River (TR) watershed, the most productive farmland in Japan. The August 2016 flood disaster was caused by multiple typhoons that occurred in the span of two weeks and dealt catastrophic damage to agricultural land. This disaster was the focus of our flood model simulations. For the hydrological model input, the rainfall data with 0.04° grid space and an hourly interval were provided by a regional climate model (RCM) during the period of multiple typhoon occurrences. The high-resolution data can take account of the geographic effects, hardly reproduced by ordinary RCMs. The rainfall data drove a conceptual, distributed rainfall–runoff model, embedded in the integrated flood analysis system. The rainfall–runoff model provided discharges along rivers over the TR watershed. The RCM also provided future rainfall data with pseudo-global warming climate, assuming that the August 2016 disaster could reoccur again in the late 21st century. The future rainfall data were used to conduct a future flood simulation. With bias corrections, current and future flood simulations showed the potential inundated areas along riverbanks based on flood risk levels. The crop field-based agricultural losses in both simulations were estimated. The future cost may be two to three times higher as indicated by slightly higher simulated future discharge peaks in tributaries.


Sign in / Sign up

Export Citation Format

Share Document