On the effect of solute release position on plume dispersion

2018 ◽  
Vol 566 ◽  
pp. 607-615 ◽  
Author(s):  
Zi Wu ◽  
Arvind Singh
Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 467
Author(s):  
Rocío Baró ◽  
Christian Maurer ◽  
Jerome Brioude ◽  
Delia Arnold ◽  
Marcus Hirtl

This paper demonstrates the environmental impacts of the wildfires occurring at the beginning of April 2020 in and around the highly contaminated Chernobyl Exclusion Zone (CEZ). Due to the critical fire location, concerns arose about secondary radioactive contamination potentially spreading over Europe. The impact of the fire was assessed through the evaluation of fire plume dispersion and re-suspension of the radionuclide Cs-137, whereas, to assess the smoke plume effect, a WRF-Chem simulation was performed and compared to Tropospheric Monitoring Instrument (TROPOMI) satellite columns. The results show agreement of the simulated black carbon and carbon monoxide plumes with the plumes as observed by TROPOMI, where pollutants were also transported to Belarus. From an air quality and health perspective, the wildfires caused extremely bad air quality over Kiev, where the WRF-Chem model simulated mean values of PM2.5 up to 300 µg/m3 (during the first fire outbreak) over CEZ. The re-suspension of Cs-137 was assessed by a Bayesian inverse modelling approach using FLEXPART as the atmospheric transport model and Ukraine observations, yielding a total release of 600 ± 200 GBq. The increase in both smoke and Cs-137 emissions was only well correlated on the 9 April, likely related to a shift of the focus area of the fires. From a radiological point of view even the highest Cs-137 values (average measured or modelled air concentrations and modelled deposition) at the measurement site closest to the Chernobyl Nuclear Power Plant, i.e., Kiev, posed no health risk.


Author(s):  
B E A Fisher

An assessment of the effects of visible cooling tower plumes on the local environment can be a necessary part of any proposal for a new large industrial process. Predictions of the dispersion of plumes from cooling towers are based on methods developed for chimney emissions. However, the kinds of criteria used to judge the acceptability of cooling tower plumes are different from those used for stack plumes. The frequency of long elevated plumes and the frequency of ground fogging are the two main issues. It is shown that events associated with significant plume visibility are dependent both on the operating characteristics of the tower and on the occurrence of certain meteorological conditions. The dependence on atmospheric conditions is shown to be fairly complex and simple performance criteria based on the exit conditions from the tower are not sufficient for assessments.


2013 ◽  
Vol 6 (1) ◽  
pp. 703-720 ◽  
Author(s):  
W. R. Stevens ◽  
W. Squier ◽  
W. Mitchell ◽  
B. K. Gullett ◽  
C. Pressley

Abstract. An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for the rotational and translational motion of the anemometer and rotated wind vectors to a global North, West, Up coordinate system. Data were taken at rates of 10 and 20 Hz to adequately correct for motion of the aerostat. The method was applied during a prescribed forest burn. These data were averaged over 15 min intervals and used as inputs for subsequent dispersion modeling. The anemometer's orientation data are demonstrated to be robust for converting the wind vector from the internal anemometer reference system to the global reference system with an average bias between 5 and 7°. Lofted wind data are compared with sonic anemometer data acquired at 10 m on a mast located near the tether point of the aerostat and with local meteorological data.


2008 ◽  
Vol 42 (36) ◽  
pp. 8524-8532 ◽  
Author(s):  
S HENDERSON ◽  
B BURKHOLDER ◽  
P JACKSON ◽  
M BRAUER ◽  
C ICHOKU

Geosciences ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Matthias Baeye ◽  
Kaveh Purkiani ◽  
Henko de de Stigter ◽  
Benjamin Gillard ◽  
Michael Fettweis ◽  
...  

The purpose of the study was to measure in situ the background suspended particulate matter concentration (SPMC) in the DISCOL area (SE Pacific) and its increase due to mechanical mobilization of the seabed. The disturbance experiment imitated future manganese nodule exploitations and was designed to measure the sediment plume generated by such activities. In the direct vicinity of the disturbance, landers equipped with acoustic and optical sensors measured the current velocities and the SPMC. The SPMC at the disturbance was easily up to 10 mg/L and thus about 200 times higher than the background concentration. The downstream sediment plume, measured by the lander, had a SPMC of about 1 mg/L. After tide reversal, the sediment plume was recorded a second time. A sediment transport model reproduced the plume dispersion. After rapid settling of the coarser fraction, a plume of hardly settling fine particles remained in suspension (and no deposition–resuspension cycles). The transport was controlled by the tides and by the vertical velocity component that resulted from bathymetrical differences. The plume may continue to disperse up to 100+ days (up to hundreds of km) depending on the particle size and until background concentration is reached.


2018 ◽  
Vol 32 (19) ◽  
pp. 2963-2975 ◽  
Author(s):  
Nicole Elizabeth Balliston ◽  
Colin Patrick Ross McCarter ◽  
Jonathan Stephen Price

2018 ◽  
Vol 169 (1) ◽  
pp. 67-91 ◽  
Author(s):  
D. Finn ◽  
R. G. Carter ◽  
R. M. Eckman ◽  
J. D. Rich ◽  
Z. Gao ◽  
...  

Author(s):  
Millán M. Millán ◽  
Rosa Salvador ◽  
Begoña Artiñano ◽  
Inmaculada Palomino

Sign in / Sign up

Export Citation Format

Share Document