Estimation of lake water storage and changes based on bathymetric data and altimetry data and the association with climate change in the central Tibetan Plateau

2019 ◽  
Vol 578 ◽  
pp. 124052 ◽  
Author(s):  
Baojin Qiao ◽  
Liping Zhu ◽  
Junbo Wang ◽  
Jianting Ju ◽  
Qingfeng Ma ◽  
...  
2019 ◽  
Author(s):  
Xingdong Li ◽  
Di Long ◽  
Qi Huang ◽  
Pengfei Han ◽  
Fanyu Zhao ◽  
...  

Abstract. The Tibetan Plateau (TP) known as Asia's water towers is quite sensitive to climate change, reflected by changes in hydrological state variables such as lake water storage. Given the extremely limited ground observations on the TP due to the harsh environment and complex terrain, we exploited multisource remote sensing, i.e., multiple altimetric missions and Landsat archives to create dense time series (monthly and even higher such as 10 days on average) of lake water level and storage changes across 52 large lakes (> 100 km2) on the TP during 2000–2017 (the data set is available online with a DOI: https://doi.org/10.1594/PANGAEA.898411). Field experiments were carried out in two typical lakes to validate the remotely sensed results. With Landsat archives and partial altimetry data, we developed optical water levels that cover most of TP lakes and serve as an ideal reference for merging multisource lake water levels. The optical water levels show an uncertainty of ~ 0.1 m that is comparable with most altimetry data and largely reduce the lack of dense altimetric observations with systematic errors well removed for most of lakes. The densified lake water levels provided critical and accurate information on the long-term and short-term monitoring of lake water level and storage changes on the TP. We found that the total storage of the 52 lakes increased by 97.3 km3 at two stages, i.e., 6.68 km3/yr during 2000–2012 and 2.85 km3/yr during 2012–2017. The total overflow from Lake Kusai to Lake Haidingnuoer and Lake Salt during Nov 9–Dec 31 in 2011 was estimated to be 0.22 km3, providing critical information on lake overflow flood monitoring and prediction as the expansion of some TP lakes becomes a serious threat to surrounding residents and infrastructure.


2021 ◽  
Vol 13 (2) ◽  
pp. 293
Author(s):  
Baojin Qiao ◽  
Jianting Ju ◽  
Liping Zhu ◽  
Hao Chen ◽  
Jinlei Kai ◽  
...  

Lake water storage is essential information for lake research. Previous studies usually used bathymetric data to acquire underwater topography by interpolation method, and to therefore estimate water storage. However, due to the large area of Tibetan Plateau (TP) lakes, the method of bathymetry was challenging to cover the whole region of one lake, and the accuracy of the underwater topography, in which no bathymetric data covered, was low, which resulted in a comparatively large error of lake water storage estimation and its change. In this study, we used Shuttle Radar Topography Mission (SRTM) and in situ bathymetric data to establish the underwater topography of Hohxil Lake (HL) and Lexiewudan Lake (LL) in the Hohxil Region of North TP and estimate and analyzed the changes of lake level and water storage. The results showed HL and LL’s water storage was 5.12 km3 and 5.31 km3 in 2019, respectively, and their level increased by 0.5 m/y and 0.57 m/y during 2003−2018, respectively. They were consistent with those (0.5 m/y and 0.5 m/y) from altimetry data, and they were much more accurate than those results (0.077 m/y and 0.156 m/y) from bathymetric data. These findings indicated that this method could improve the accuracy of lake water storage and change estimation. We estimated water storage of two lakes by combining with multitemporal Landsat images, which had doubled since 1976. Our results suggested that the increasing precipitation may dominate the lake expansion by comparing with the change of temperature and precipitation and the increasing glacial meltwater contributed approximately 4.8% and 10.7% to lake expansion of HL and LL during 2000–2019 based on the glacier mass balance data, respectively.


2020 ◽  
Author(s):  
Eryuan Liang ◽  
Xiaoming Lu ◽  
Yafeng Wang ◽  
Flurin Babst ◽  
Steven W. Leavitt ◽  
...  

<p>Alpine biomes are climate change hotspots, and treeline dynamics in particular have received much attention as visible evidence of climate-induced shifts in species distributions. Comparatively little is known, however, about the effects of climate change on alpine shrubline dynamics. Here, we reconstruct decadally resolved shrub recruitment history (age structure) through the combination of field surveys and dendroecology methods at the world’s highest juniper (Juniperus pingii var. wilsonii) shrublines on the south-central Tibetan Plateau. A total of 1,899 shrubs were surveyed at 12 plots located in four regions along an east-to-west declining precipitation gradient. We detected synchronous recruitment with 9 out of 12 plots showing a gradual increase from 1600 to 1900, a peak at 1900–1940, and a subsequent decrease from the 1930s onward. Shrub recruitment was significantly and positively correlated with reconstructed summer temperature from 1600 to 1940, whereas it was negatively associated with temperature in recent decades (1930–2000). Recruitment was also positively correlated with precipitation, except in the 1780–1830 period, when a trend toward wetter climate conditions began. This apparent tipping point in recruitment success coincides with a switch from positive to negative impacts of rising temperatures.  Warming-induced drought limitation has likely reduced the recruitment potential of alpine juniper shrubs in recent decades. Continued warming is thus expected to further alter the dynamics of alpine shrublines on the Tibetan Plateau and elsewhere.</p>


2019 ◽  
Vol 11 (4) ◽  
pp. 1603-1627 ◽  
Author(s):  
Xingdong Li ◽  
Di Long ◽  
Qi Huang ◽  
Pengfei Han ◽  
Fanyu Zhao ◽  
...  

Abstract. The Tibetan Plateau (TP), known as Asia's water tower, is quite sensitive to climate change, which is reflected by changes in hydrologic state variables such as lake water storage. Given the extremely limited ground observations on the TP due to the harsh environment and complex terrain, we exploited multiple altimetric missions and Landsat satellite data to create high-temporal-resolution lake water level and storage change time series at weekly to monthly timescales for 52 large lakes (50 lakes larger than 150 km2 and 2 lakes larger than 100 km2) on the TP during 2000–2017. The data sets are available online at https://doi.org/10.1594/PANGAEA.898411 (Li et al., 2019). With Landsat archives and altimetry data, we developed water levels from lake shoreline positions (i.e., Landsat-derived water levels) that cover the study period and serve as an ideal reference for merging multisource lake water levels with systematic biases being removed. To validate the Landsat-derived water levels, field experiments were carried out in two typical lakes, and theoretical uncertainty analysis was performed based on high-resolution optical images (0.8 m) as well. The RMSE of the Landsat-derived water levels is 0.11 m compared with the in situ measurements, consistent with the magnitude from theoretical analysis (0.1–0.2 m). The accuracy of the Landsat-derived water levels that can be derived in relatively small lakes is comparable with most altimetry data. The resulting merged Landsat-derived and altimetric lake water levels can provide accurate information on multiyear and short-term monitoring of lake water levels and storage changes on the TP, and critical information on lake overflow flood monitoring and prediction as the expansion of some TP lakes becomes a serious threat to surrounding residents and infrastructure.


Sign in / Sign up

Export Citation Format

Share Document