Effect of seepage flow on incipient motion of sand particles in a bed subjected to surface flow

2019 ◽  
Vol 579 ◽  
pp. 124178
Author(s):  
Arif Jewel ◽  
Kazunori Fujisawa ◽  
Akira Murakami
Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 994
Author(s):  
Reza Shahmohammadi ◽  
Hossein Afzalimehr ◽  
Jueyi Sui

In this study, the incipient motion of four groups of sand, ranging from medium to very coarse particles, was experimentally examined using an acoustic Doppler velocimeter (ADV) in different water depths under the hydraulically transitional flow condition. The transport criterion of the Kramer visual observation method was used to determine threshold conditions. Some equations for calculating threshold average and near-bed velocities were derived. Results showed that the threshold velocity was directly proportional to both sediment particle size and water depth. The vertical distributions of the Reynolds shear stress showed an increase from the bed to about 0.1 of the water’s depth, after performing a damping area, then a decrease toward the water surface. By extending the linear portion of the Reynolds shear stress in the upper zone of the damping area to the bed, the critical shear stress, particle shear Reynolds number, and critical Shields parameter were calculated. Results showed that the critical Shields parameter was located under the Shields curve, showing no sediment motion. This indicates that the incipient motion of sediment particles occurred with smaller bed shear stress than that estimated using the Shields diagram in the hydraulically transitional flow region. The reason could be related to differences between the features of the present experiment and those of the experiments used in the development of the Shields diagram, including the approaches to determine and define threshold conditions, the accuracy of experimental tools to estimate critical shear stress, and sediment particle characteristics. Therefore, the change in the specifications of experiments from those on which the Shields diagram has been based led to the deviation between the estimation using the Shields diagram and that of real threshold conditions, at least in the hydraulically transitional flow region with sand particles.


1993 ◽  
Vol 20 (5) ◽  
pp. 820-827 ◽  
Author(s):  
J. A. Kells

A procedure for determining the flow conditions through and over a simple, rockfill embankment having a horizontal top surface is presented. In this situation, the free surface flow regime can be characterized as spatially varied and the seepage flow regime as non-Darcian. Included in the paper are a review of spatially varied flow theory and analysis, a brief description of the numerical method used to conduct the non-Darcy seepage analysis, a few comments with respect to the determination of the flow properties of the model rockfill, and a discussion of the application of the analysis procedure to a model rockfill embankment. Two flow conditions were tested. The one flow condition was for partial overtopping of the embankment, while the other involved complete overtopping. The spatially varied flow analysis was carried out using a spreadsheet, and it included the incorportion of Hinds' method for control point location. A modified version of a Darcian finite element seepage program was used for the seepage analysis. The computed results are compared with those obtained from a physical model. As shown in the paper, the results are generally supportive of the proposed modeling procedure. Key words: control point, non-Darcy seepage, numerical model, physical model, porous media, rockfill, spatially varied flow.


2021 ◽  
Vol 9 (6) ◽  
pp. 580
Author(s):  
Hualing Zhai ◽  
Dong-Sheng Jeng ◽  
Zhen Guo

Pipelines have been used as one of the main transportation methods for the offshore industry, with increasing activities in marine resources recently. Prediction of seabed instability is one of key factors that must be taken into consideration for an offshore pipeline project. As the first step of the scour process, sediment incipient motion has been intensively studied in the past. Most previous investigations didn’t consider the wave-induced seepage in the elevation of sediment motion. In this paper, two-dimensional seepage was considered to modify the conventional Shields number and its associated impact on sediment incipient motion around the trenched pipeline was investigated. Both flat and sloping seabeds are considered. The numerical results indicated that a peak or valley of the modified Shields number was formed below the pipeline and horizontal seepage flow tremendously impact the sediment motion in the vicinity of the pipeline. Parametric analysis concludes: the influence of the seepage around the pipeline becomes more significant in a large wave, shallow water in a seabed with large shear modulus and permeability, and larger pipeline diameter and smaller flow gap ratio. This will make soil particles be more easily dragged away from the seabed.


2014 ◽  
Vol 2014.27 (0) ◽  
pp. 687-688
Author(s):  
Tomotaka Nogami ◽  
Mitsuteru Asai ◽  
Toshihiro Morimoto ◽  
Aly Abdelraheem

2021 ◽  
Vol 108 ◽  
pp. 102510
Author(s):  
Hualing Zhai ◽  
Dong-Sheng Jeng ◽  
Zhen Guo ◽  
Zuodong Liang

Sign in / Sign up

Export Citation Format

Share Document