Coupled annual and daily multivariate and multisite stochastic weather generator to preserve low- and high-frequency variability to assess climate vulnerability

2020 ◽  
Vol 581 ◽  
pp. 124443
Author(s):  
Kuk-Hyun Ahn
1997 ◽  
Vol 40 (4) ◽  
Author(s):  
R. Caballero

A simple explanation is presented for the observed interannual changes in the dominant space and time scales of Northem Hemisphere winter extratropical high frequency variability. It is found that such changes can suc- cessfully be predicted by linearizing a 2-level quasi-geostrophic mode] in spherical geometry around the ob- served zona] mean states. The mechanisms responsible for the selection of the most unstable normal mode are investigated.


2020 ◽  
Vol 9 (4) ◽  
pp. 257
Author(s):  
NI PUTU AYUNDA SURYA DEWI ◽  
KOMANG DHARMAWAN ◽  
KARTIKA SARI

Agricultural insurance protects farmers who experience crop failure. This study aims to calculate the value of agricultural insurance premium by applying simulated rainfall index-based using stochastic weather generator on soybean commodities in Negara sub-district. This study are used rainfall data to determine the probability of the transition, then perform rainfall simulations using the Stochastic Weather Generator method to obtain trigger values and continued with the calculation of agricultural insurance premiums. Results of this study provide the value that higher trigger is taken, the greater the insurance premium that must be paid. The value of insurance premiums to be paid is 4,18% - 5,66% of insurance costs Rp2.605.000,00.


1999 ◽  
Vol 276 (1) ◽  
pp. R178-R183 ◽  
Author(s):  
Philippe Van De Borne ◽  
Martin Hausberg ◽  
Robert P. Hoffman ◽  
Allyn L. Mark ◽  
Erling A. Anderson

The exact mechanisms for the decrease in R-R interval (RRI) during acute physiological hyperinsulinemia with euglycemia are unknown. Power spectral analysis of RRI and microneurographic recordings of muscle sympathetic nerve activity (MSNA) in 16 normal subjects provided markers of autonomic control during 90-min hyperinsulinemic/euglycemic clamps. By infusing propranolol and insulin ( n = 6 subjects), we also explored the contribution of heightened cardiac sympathetic activity to the insulin-induced decrease in RRI. Slight decreases in RRI ( P < 0.001) induced by sevenfold increases in plasma insulin could not be suppressed by propranolol. Insulin increased MSNA by more than twofold ( P < 0.001), decreased the high-frequency variability of RRI ( P< 0.01), but did not affect the absolute low-frequency variability of RRI. These results suggest that reductions in cardiac vagal tone and modulation contribute at least in part to the reduction in RRI during hyperinsulinemia. Moreover, more than twofold increases in MSNA occurring concurrently with a slight and not purely sympathetically mediated tachycardia suggest regionally nonuniform increases in sympathetic activity during hyperinsulinemia in humans.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1896 ◽  
Author(s):  
Gabriel-Martin ◽  
Sordo-Ward ◽  
Garrote ◽  
García

This paper focuses on proposing the minimum number of storms necessary to derive the extreme flood hydrographs accurately through event-based modelling. To do so, we analyzed the results obtained by coupling a continuous stochastic weather generator (the Advanced WEather GENerator) with a continuous distributed physically-based hydrological model (the TIN-based real-time integrated basin simulator), and by simulating 5000 years of hourly flow at the basin outlet. We modelled the outflows in a basin named Peacheater Creek located in Oklahoma, USA. Afterwards, we separated the independent rainfall events within the 5000 years of hourly weather forcing, and obtained the flood event associated to each storm from the continuous hourly flow. We ranked all the rainfall events within each year according to three criteria: Total depth, maximum intensity, and total duration. Finally, we compared the flood events obtained from the continuous simulation to those considering the N highest storm events per year according to the three criteria and by focusing on four different aspects: Magnitude and recurrence of the maximum annual peak-flow and volume, seasonality of floods, dependence among maximum peak-flows and volumes, and bivariate return periods. The main results are: (a) Considering the five largest total depth storms per year generates the maximum annual peak-flow and volume, with a probability of 94% and 99%, respectively and, for return periods higher than 50 years, the probability increases to 99% in both cases; (b) considering the five largest total depth storms per year the seasonality of flood is reproduced with an error of less than 4% and (c) bivariate properties between the peak-flow and volume are preserved, with an error on the estimation of the copula fitted of less than 2%.


Sign in / Sign up

Export Citation Format

Share Document