Multi-spectroscopic investigation on the spatial distribution and copper binding ability of sediment dissolved organic matter in Nansi Lake, China

2020 ◽  
Vol 591 ◽  
pp. 125289
Author(s):  
Haoyu Ren ◽  
Feiyang Ma ◽  
Xin Yao ◽  
Keqiang Shao ◽  
Liwei Yang
Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3481
Author(s):  
Zheng Li ◽  
Zhenghui Fu ◽  
Yang Zhang ◽  
Yunyan Guo ◽  
Feifei Che ◽  
...  

Dissolved organic matter (DOM) has a great impact on the main pollution indicators of lakes (such as chemical oxygen demand, COD). Therefore, DOM is the research basis for understanding the meaning of the water environment and the laws of the migration and transformation of pollutants. Qinghai Lake is one of the world’s typical inland plateau lake wetlands. It plays important roles in improving and regulating the climate and in promoting a virtuous regional ecological cycle. In recent years, with the acceleration of urbanization and the rapid development of tourism, under the background of climate change, and with grassland degradation and precipitation change, the whole basin of Qinghai Lake has been facing great ecological pressure. In order to comprehensively explore the water environment of Qinghai Lake and to protect the sustainable development of the basin, a systematic study was carried out on the whole basin of Qinghai Lake. The results show the following: (1) from 2010 to 2020, the annual average value of CODCr in Qinghai Lake fluctuated in the range from class III to class V according to the surface water environmental quality standard, showing first a downward trend and then an upward trend. (2) The concentration of CDOM in Qinghai Lake had obvious temporal and spatial changes. (3) The spatial distribution of the total fluorescence intensity of FDOM in water was also different in different seasons. However, in the three surveys, the area with the highest total fluorescence intensity of FDOM in the water body appeared near Erlangjian in the south of Qinghai Province, indicating that anthropogenic sources are the main controlling factors of dissolved organic matter in the lake.


2021 ◽  
Author(s):  
Haoyu Ren ◽  
Xin Yao ◽  
Feiyang Ma ◽  
Tuantuan Fan ◽  
Huanguang Deng ◽  
...  

Abstract Variations in dissolved organic matter (DOM) quality has far-reaching implications that affect, e.g., aquatic productivity, food web structures, trace element and pollutant transport. In this study, a total of 186 water samples were collected at 62 sites (three points in time within one year) in Nansi Lake. UV-Vis spectra, Synchronous fluorescence (SF) spectra, the excitation-emission matrix and parallel factor analysis (EEM-PARAFAC) were applied to indicate the source and quality of DOM. Water transferring of the eastern route of China’s South-to-North Water Diversion Project had a great influence on the water level of Nansi Lake. Results of SF spectra, EEM-PARAFAC and principal component analysis (PCA) suggested that protein-like substances played a more important role in DOM properties in April and July than October. This result is related to a high fluorescence intensity occurred in April (Fmax=0.72±0.03 in the upper lake and 1.84±0.13 in the lower lake) and July (Fmax=1.10±0.05 in the upper lake and 1.49±0.04 in the lower lake), which might be caused by water transferring from other lakes to Nansi Lake, death and decomposition of submerged plants. At the same time, relatively good correlations were found between humic-like substances, DOC and a254 in April, July and October, which indicated the important contribution of humic-like substances to Nansi Lake. With the completion of the water diversion, the ratio of the fluorescence intensity of component to the total fluorescence intensity (%Fmax) suggested that the proportion of humic-like substances started to increase. And when it came to October, humic-like substances become the main substance in DOM collected from Nansi Lake (%Fmax=66.56%±0.58% in the upper lake and 61.98%±0.99% in the lower lake). Moreover, among the two areas in Nansi Lake, the upper lake always had a higher degree of humification (HIX=2.23±0.06, 2.38±0.11 and 3.10±0.05 in April, July and October, respectively) than the lower lake (HIX=1.06±0.05, 1.68±0.05 and 2.62±0.08 in April, July and October, respectively), which implied extraneous contaminants might have a more important impact on DOM properties in the upper lake.


2019 ◽  
Vol 6 (7) ◽  
pp. 2037-2048 ◽  
Author(s):  
Yang Ding ◽  
Yang Lu ◽  
Peng Liao ◽  
Shimeng Peng ◽  
Yuzhen Liang ◽  
...  

We elucidated the spatial distribution of DOM on allophane and the mechanisms controlling the adsorptive fractionation of DOM molecules.


Sign in / Sign up

Export Citation Format

Share Document