scholarly journals Loadings of dissolved organic matter and nutrients from the Neva River into the Gulf of Finland – Biogeochemical composition and spatial distribution within the salinity gradient

2016 ◽  
Vol 186 ◽  
pp. 58-71 ◽  
Author(s):  
Pasi Ylöstalo ◽  
Jukka Seppälä ◽  
Seppo Kaitala ◽  
Petri Maunula ◽  
Stefan Simis
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brice K. Grunert ◽  
Maria Tzortziou ◽  
Patrick Neale ◽  
Alana Menendez ◽  
Peter Hernes

AbstractThe Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.


2014 ◽  
Vol 52 (12) ◽  
pp. 1072-1077 ◽  
Author(s):  
Rehemanjiang Wufuer ◽  
Ying Liu ◽  
Shuyong Mu ◽  
Wenjuan Song ◽  
Xue Yang ◽  
...  

2002 ◽  
Vol 36 (12) ◽  
pp. 2560-2565 ◽  
Author(s):  
Pirjo Isosaari ◽  
Harri Kankaanpää ◽  
Jukka Mattila ◽  
Hannu Kiviranta ◽  
Matti Verta ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3481
Author(s):  
Zheng Li ◽  
Zhenghui Fu ◽  
Yang Zhang ◽  
Yunyan Guo ◽  
Feifei Che ◽  
...  

Dissolved organic matter (DOM) has a great impact on the main pollution indicators of lakes (such as chemical oxygen demand, COD). Therefore, DOM is the research basis for understanding the meaning of the water environment and the laws of the migration and transformation of pollutants. Qinghai Lake is one of the world’s typical inland plateau lake wetlands. It plays important roles in improving and regulating the climate and in promoting a virtuous regional ecological cycle. In recent years, with the acceleration of urbanization and the rapid development of tourism, under the background of climate change, and with grassland degradation and precipitation change, the whole basin of Qinghai Lake has been facing great ecological pressure. In order to comprehensively explore the water environment of Qinghai Lake and to protect the sustainable development of the basin, a systematic study was carried out on the whole basin of Qinghai Lake. The results show the following: (1) from 2010 to 2020, the annual average value of CODCr in Qinghai Lake fluctuated in the range from class III to class V according to the surface water environmental quality standard, showing first a downward trend and then an upward trend. (2) The concentration of CDOM in Qinghai Lake had obvious temporal and spatial changes. (3) The spatial distribution of the total fluorescence intensity of FDOM in water was also different in different seasons. However, in the three surveys, the area with the highest total fluorescence intensity of FDOM in the water body appeared near Erlangjian in the south of Qinghai Province, indicating that anthropogenic sources are the main controlling factors of dissolved organic matter in the lake.


2019 ◽  
Vol 6 (7) ◽  
pp. 2037-2048 ◽  
Author(s):  
Yang Ding ◽  
Yang Lu ◽  
Peng Liao ◽  
Shimeng Peng ◽  
Yuzhen Liang ◽  
...  

We elucidated the spatial distribution of DOM on allophane and the mechanisms controlling the adsorptive fractionation of DOM molecules.


Ocean Science ◽  
2012 ◽  
Vol 8 (4) ◽  
pp. 603-614 ◽  
Author(s):  
T. Liblik ◽  
U. Lips

Abstract. We present and analyze high-resolution observational data of thermohaline structure and currents acquired in the Gulf of Finland (Baltic Sea), using an autonomous buoy profiler and bottom-mounted acoustic Doppler current profiler during July–August 2009. Vertical profiles of temperature and salinity were measured in the upper 50-m layer with a 3 h time resolution, and vertical profiles of current velocity and direction were recorded with a 10 min time resolution. Although large temporal variations of vertical temperature and salinity distributions were revealed, it was possible to define several periods with quasi-stationary vertical thermohaline structure. These quasi-stationary stratification patterns persisted for 4–15 days and were dominated by certain physical processes: upwelling, relaxation of upwelling, estuarine circulation and its wind-induced reversal, and downwelling. Vertical profiles of current velocities supported the concept of synoptic-scale, quasi-stationary periods of hydrophysical fields, characterized by distinct layered flow structures and current oscillations. To estimate the contribution of different processes to the changes in stratification, a simple conceptual model was developed. The model accounts for heat flux through the sea surface, wind mixing, wind-induced transport (parallel to the horizontal salinity gradient) in the upper layer, and estuarine circulation. It reproduced observed changes in vertical stratification reasonably well. The largest discrepancies between observations and model results were found when water motions across the Gulf and associated vertical displacements of isopycnals (upwelling or downwelling) were dominant processes.


Sign in / Sign up

Export Citation Format

Share Document