Interspecific variation in tree- and stand-scale stemflow funneling ratios in a subtropical deciduous forest in eastern China

2020 ◽  
Vol 590 ◽  
pp. 125455
Author(s):  
Haixia Zhang ◽  
Delphis F. Levia ◽  
Bin He ◽  
Huawu Wu ◽  
Aimin Liao ◽  
...  
2019 ◽  
Vol 16 (8) ◽  
pp. 1788-1801 ◽  
Author(s):  
Hai-xia Zhang ◽  
Hua-wu Wu ◽  
Jing Li ◽  
Bin He ◽  
Jiu-fu Liu ◽  
...  

2020 ◽  
Vol 22 ◽  
Author(s):  
Shannon L Summers ◽  
Akito Y Kawahara ◽  
Ana P. S. Carvalho

Male mating plugs have been used in many species to prevent female re-mating and sperm competition. One of the most extreme examples of a mating plug is the sphragis, which is a large, complex and externalized plug found only in butterflies. This structure is found in many species in the genus Acraea (Nymphalidae) and provides an opportunity for investigation of the effects of the sphragis on the morphology of the genitalia, which is poorly understood. This study aims to understand morphological interspecific variation in the genitalia of Acraea butterflies. Using specimens from museum collections, abdomen dissections were conducted on 19 species of Acraea: 9 sphragis bearing and 10 non-sphragis bearing species. Genitalia imaging was performed for easier comparison and analysis and measurements of genitalia structures was done using ImageJ software. Some distinguishing morphological features in the females were found. The most obvious difference is the larger and more externalized copulatory opening in sphragis bearing species, with varying degrees of external projections. Females of the sphragis bearing species also tend to have a shorter ductus (the structure that connects the copulatory opening with the sperm storage organ) than those without the sphragis. These differences may be due to a sexually antagonistic coevolution between the males and females, where the females evolve larger and more difficult to plug copulatory openings and the males attempt to prevent re-mating with the sphragis.


2019 ◽  
Vol 79 (2) ◽  
pp. 109-126
Author(s):  
D Tian ◽  
J Su ◽  
F Zhou ◽  
B Mayer ◽  
D Sein ◽  
...  

Reproduction ◽  
2000 ◽  
pp. 111-120 ◽  
Author(s):  
JA Chapman ◽  
OW Wiebkin ◽  
WG Breed

The zona pellucida glycoconjugate content of several marsupial species was investigated using differential lectin histochemistry. Ovaries from fat-tailed dunnarts, a southern brown bandicoot, grey short-tailed opossums, brushtail possums, ringtail possums, koalas and eastern grey kangaroos were fixed, embedded in paraffin wax, sectioned and stained with ten fluorescein isothiocyanate-conjugated lectins. Sections were also incubated with either neuraminidase or saponified, respectively, before incubation with the lectins to identify saccharide residues masked by sialic acids or O-acetyl groups on sialic acids. The zonae pellucidae surrounding the oocytes of the marsupials demonstrated interspecific variation in glycoconjugate content, with mannose-containing glycoconjugates exhibiting the greatest variation. Some of the zona pellucida glycoconjugates of all species, except those of the opossums, were masked by sialic acid with an increase in fluorescence with lectins from Arachis hypogea (PNA), and Glycine max (SBA), after desialylation. The disaccharide beta-galactose(1-4)N-acetyl-D-glucosamine appeared to be conformationally masked by O-acetyl groups of sialic acids in the zonae pellucidae of all species, with an increase in fluorescence with the lectin from Erythrina cristagalli (ECA), after saponification. Similar intensity and localization of beta-(1-4)-N-acetyl-D-glucosamine, as shown by staining of the lectin from Triticum vulgaris (WGA), to the inner and outer regions of the zona pellucida, were found to those reported in eutherian species. WGA fluorescence became uniform throughout the zonae pellucidae after saponification, indicating differential O-acetylation of sialic acids on the internal compartment of the zonae pellucidae.


2017 ◽  
Vol 28 (1-2) ◽  
pp. 28-35 ◽  
Author(s):  
B. A. Baranovski

Nowadays, bioecological characteristics of species are the basis for flora and vegetation studying on the different levels. Bioecological characteristics of species is required in process of flora studying on the different levels such as biotopes or phytocenoses, floras of particular areas (floras of ecologically homogeneous habitats), and floras of certain territories. Ramensky scale is the one of first detailed ecological scales on plant species ordination in relation to various environmental factors; it developed in 1938 (Ramensky, 1971). A little later (1941), Pogrebnyak’s scale of forest stands was proposed. Ellenberg’s system developed in 1950 (Ellenberg, 1979) and Tsyganov’s system (Tsyganov, 1975) are best known as the systems of ecological scales on vascular plant species; these systems represent of habitat detection by ecotopic ecomorphs of plant species (phytoindication). Basically, the system proposed by Alexander Lyutsianovich Belgard was the one of first system of plant species that identiified ectomorphs in relation to environmental factors. As early as 1950, Belgard developed the tabulated system of ecomorphs using the Latin ecomorphs abbreviation; he also used the terminology proposed in the late 19th century by Dekandol (1956) and Warming (1903), as well as terminology of other authors. The article analyzes the features of Belgard’s system of ecomorphs on vascular plants. It has certain significance and advantages over other systems of ecomorphs. The use of abbreviated Latin names of ecomorphs in tabular form enables the use shortened form of ones. In the working scheme of Belgard’s system of ecomorphs relation of species to environmental factors are represented in the abbreviated Latin alphabetic version (Belgard, 1950). Combined into table, the ecomorphic analysis of plant species within association (ecological certification of species), biotope or area site (water area) gives an explicit pattern on ecological structure of flora within surveyed community, biotope or landscape, and on environmental conditions. Development and application by Belgrard the cenomorphs as «species’ adaptation to phytocenosis as a whole» were completely new in the development of systems of ecomorphs and, in this connection, different coenomorphs were distinguished. Like any concept, the system of ecomorphs by Belgard has the possibility and necessity to be developed and added. Long-time researches and analysis of literature sources allow to propose a new coenomorph in the context of Belgard’s system of ecomorphs development: silvomargoant (species of forest margin, from the Latin words margo – edge, boundary (Dvoretsky, 1976), margo – margin, ad margins silvarum – along the deciduous forest margins). As an example of ecomorphic characterization of species according to the system of ecomorphs by Belgard (when the abbreviated Latin ecomorph names are used in tabular form and the proposed cenomorph is used), it was given the part of the table on vascular plants ecomorphs in the National Nature Park «Orelsky» (Baranovsky et al). The Belgard’s system of ecomorphs is particularly convenient and can be successfully applied to data processing in the ecological analysis of the flora on wide areas with significant species richness, and the proposed ecomorph will be another necessary element in the Belgard’s system of ecomorphs. 


Sign in / Sign up

Export Citation Format

Share Document