Interspecific variation of zona pellucida glycoconjugates in several species of marsupial

Reproduction ◽  
2000 ◽  
pp. 111-120 ◽  
Author(s):  
JA Chapman ◽  
OW Wiebkin ◽  
WG Breed

The zona pellucida glycoconjugate content of several marsupial species was investigated using differential lectin histochemistry. Ovaries from fat-tailed dunnarts, a southern brown bandicoot, grey short-tailed opossums, brushtail possums, ringtail possums, koalas and eastern grey kangaroos were fixed, embedded in paraffin wax, sectioned and stained with ten fluorescein isothiocyanate-conjugated lectins. Sections were also incubated with either neuraminidase or saponified, respectively, before incubation with the lectins to identify saccharide residues masked by sialic acids or O-acetyl groups on sialic acids. The zonae pellucidae surrounding the oocytes of the marsupials demonstrated interspecific variation in glycoconjugate content, with mannose-containing glycoconjugates exhibiting the greatest variation. Some of the zona pellucida glycoconjugates of all species, except those of the opossums, were masked by sialic acid with an increase in fluorescence with lectins from Arachis hypogea (PNA), and Glycine max (SBA), after desialylation. The disaccharide beta-galactose(1-4)N-acetyl-D-glucosamine appeared to be conformationally masked by O-acetyl groups of sialic acids in the zonae pellucidae of all species, with an increase in fluorescence with the lectin from Erythrina cristagalli (ECA), after saponification. Similar intensity and localization of beta-(1-4)-N-acetyl-D-glucosamine, as shown by staining of the lectin from Triticum vulgaris (WGA), to the inner and outer regions of the zona pellucida, were found to those reported in eutherian species. WGA fluorescence became uniform throughout the zonae pellucidae after saponification, indicating differential O-acetylation of sialic acids on the internal compartment of the zonae pellucidae.

2018 ◽  
Vol 30 (1) ◽  
pp. 195
Author(s):  
E. N. Antonova ◽  
O. V. Glazova ◽  
A. V. Gaponova ◽  
N. A. Volkova ◽  
P. Y. Volchkov

It is known that avian influenza penetrates into the host cell by binding with sialic acids, the terminal residues of oligosaccharides. Avian influenza A virus preferably recognises α(2,3)-linked sialic acid residues as a receptor for penetration whereas human influenza A virus preferably binds with α(2,6)-linked sialic acids. Prevention of transfer of sialic acids to sugar bond or removal of it could be a defensive strategy against viral infection. There are 6 known sialyltransferases (ST3Gal1-6) that transfer α(2,3)-linked sialic acid residues to sugar branches. Most avian influenza virus isolates bind strongly to a sugar chain containing Neu5Aca(2,3) residues. In our study, we have shown that knockout of sialyltransferases leads to inhibition of viral infection. To find the expressed sialyltransferases in respiratory and digestive tracts, we used RT-qPCR. Tissue samples were taken from 3 chickens of Haisex white cross. Expression of mRNA was measured by RT-qPCR in 3 repeats and serial dilutions. Data analysis was carried out using the 2−ΔΔCt method. The amount of total RNA was normalised using GAPDH mRNA. For CRISPR/Cas9 targeting sialyltransferases, 3 guide RNAs for each gene were designed. We confirmed knockout (KO) of ST3GAL1 and ST3GAL6 by T7E assay. To estimate sialylation level on the cell surface, we performed a lectin-binding assay. For the assay, cells were incubated with fluorescein isothiocyanate (FITC)-labelled Maackia amurensis lectins and then subjected to flow-cytometry analysis to quantify the percentage of α(2,3)-sialylated cells in DF1 knockout (KO) v. DF1 wild type (wt) cell line. To estimate resistance to viral infection, a hemagglutinin binding assay was done, using fluorescein isothiocyanate (FITC)-labelled HA1 from H5N1 (A/Vietnam/1203/2004). To quantify the percentage of agglutinated HA1 molecules, DF1 KO and DF1 wt cells were analysed by flow cytometry. We found that mainly ST3GAL4 and ST3GAL5 are expressed in the chicken intestine (3-fold and 20-fold less compared with GAPDH level, respectively; other STs were not detected), and mainly ST3GAL1 and ST3GAL6 are expressed in the chicken respiratory tract (5-fold and 1.2-fold more compared with GAPDH level respectively; other STs were not detected). The expression profile of α(2,3)-sialyltransferases in the DF1 chicken cell line showed the noticeable expression of ST3GAL1 and ST3GAL6 compared with others as has been shown for the respiratory tract (500- and 1000-fold less compared with GAPDH respectively; other STs were not detected). In this study, we adopted the CRISPR/Cas9 system to knock out ST3GAL1 and ST3GAL6 genes in the chicken DF1 cell line. We confirmed that knockout of the genes leads to extinction of α(2,3)-sialic residues from the cell surface (7% v. 100% for DF1 KO v. DF1 wt cell line). Finally, we showed that knockout of sialyltransferases in the DF1 cells increases resistance against influenza A infection (16% v. 100% for DF1 KO v. DF1 wt cell line). Thus, creation of transgenic poultry with tissue-specific knockout of the α(2,3) sialyltransferases might protect domestic birds against influenza virus and block possible transfer of avian flu to human population.


1969 ◽  
Vol 62 (4) ◽  
pp. 663-670 ◽  
Author(s):  
Lars Carlborg

ABSTRACT Oestrogens administered in lower doses than necessary to induce full cornification of the mouse vagina induce mucification. It was shown previously that the degree of mucification could be estimated by quantitative determination of sialic acids. A suitable parameter for oestrogen assay was the measurement of vaginal sialic acid concentration which exhibited a clear cut dose response curve. Eleven assays of various oestrogens were performed with this method. Their estimated relative potencies were in good agreement with other routine oestrogen assays. A statistically sufficient degree of precision was found. The sensitivity was of the same order, or slightly higher, than the Allen-Doisy test.


2021 ◽  
Author(s):  
Yixuan Xie ◽  
Siyu Chen ◽  
Qiongyu Li ◽  
Ying Sheng ◽  
Michael R Alvarez ◽  
...  

A cross-linking method is developed to elucidate the glycan-mediated interactions between membrane proteins through sialic acids. The method provides previously unknown extensive glycomic interactions on cell membranes. The vast majority...


2017 ◽  
Vol 8 (9) ◽  
pp. 6165-6170 ◽  
Author(s):  
A. Matsumoto ◽  
A. J. Stephenson-Brown ◽  
T. Khan ◽  
T. Miyazawa ◽  
H. Cabral ◽  
...  

A group of heterocyclic boronic acids demonstrating unusually high affinity and selectivity for sialic acids are described, with strong interactions under the weakly acidic pH conditions associated with a hypoxic tumoral microenvironment.


2015 ◽  
Vol 11 ◽  
pp. 617-621 ◽  
Author(s):  
Chian-Hui Lai ◽  
Heung Sik Hahm ◽  
Chien-Fu Liang ◽  
Peter H Seeberger

A sialic acid glycosyl phosphate building block was designed and synthesized. This building block was used to prepare α-sialylated oligosaccharides by automated solid-phase synthesis selectively.


2004 ◽  
Vol 78 (15) ◽  
pp. 8094-8101 ◽  
Author(s):  
Peter L. Delputte ◽  
Hans J. Nauwynck

ABSTRACT Recently, we showed that porcine sialoadhesin (pSn) mediates internalization of the arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) in alveolar macrophages (Vanderheijden et al., J. Virol. 77:8207-8215, 2003). In rodents and humans, sialoadhesin, or Siglec-1, has been described as a macrophage-restricted molecule and to specifically bind sialic acid moieties. In the current study, we investigated whether pSn is a sialic acid binding protein and, whether so, whether this property is important for its function as a PRRSV receptor. Using untreated and neuraminidase-treated sheep erythrocytes, we showed that pSn binds sialic acid. Furthermore, pSn-specific monoclonal antibody 41D3, which blocks PRRSV infection, inhibited this interaction. PRRSV attachment to and infection of porcine alveolar macrophages (PAM) were both shown to be dependent on the presence of sialic acid on the virus: neuraminidase treatment of virus but not of PAM blocked infection and reduced attachment. Enzymatic removal of all N-linked glycans on the virus with N-glycosidase F reduced PRRSV infection, while exclusive removal of nonsialylated N-linked glycans of the high-mannose type with endoglycosidase H had no significant effect. Free sialyllactose and sialic acid containing (neo)glycoproteins reduced infection, while lactose and (neo)glycoproteins devoid of sialic acids had no significant effect. Studies with linkage-specific neuraminidases and lectins indicated that α2-3- and α2-6-linked sialic acids on the virion are important for PRRSV infection of PAM. From these results, we conclude that pSn is a sialic acid binding lectin and that interactions between sialic acid on the PRRS virion and pSn are essential for PRRSV infection of PAM.


2021 ◽  
Vol 38 (3) ◽  
pp. 266-271
Author(s):  
Yosun MATER ◽  
Günnur DEMİRCAN

The importance of early cancer diagnosis has led to development of many different diagnostic methods. In this context, the studies investigating the presence and amount of sugar residues to use as indicators in the identification of cancer cell type have become prominent. In the present study, sialic acids found on the membrane surfaces of ER (+) MCF-7 and ER (-) MDA-MB-231 breast cancer cell lines were labeled using three-dimensional (3D) cell culture (Spheroid) model as the closest method to the patient sample, thus its natural environment, among the cell culture methods. These sugar units that play a role in regulation of important immune characteristics such as recognition, binding and metastasis were made visualizable by applying fluorescent-labeled lectins such as FITC-(Wheat Germ Agglutinin) specifically binding to sialic acid units (GlcNAc, Neu5Ac) including particularly ß-GlcNAc and FITC-(Maackia Amurensis-Lectin-1) specifically binding to Galß4GlcNAc type sialic acids. These glycan units were specifically labeled with FITC-(Maackia Amurensis-Lectin-1) and FITC- (Wheat Germ Agglutinin) and radiation intensities were analyzed relatively. The two different breast cancer cell cultures were compared with respect to change in the amounts of sialic acid residues containing α-2,3- and α-2,6 bonds using fluorescent-labeled lectins. In the present study, we have performed a precise, accurate and rapid determination of the sugar content in the different breast cancer cell surface lines by means of fluorescent-labeled lectins and carried out a relative comparison between the micrographs.


2021 ◽  
Author(s):  
Emmanuele Severi ◽  
Michelle Rudden ◽  
Andrew Bell ◽  
Tracy Palmer ◽  
Nathalie Juge ◽  
...  

AbstractLocated at the tip of cell surface glycoconjugates, sialic acids are at the forefront of host-microbe interactions and, being easily liberated by sialidase enzymes, are used as metabolites by numerous bacteria, particularly by pathogens and commensals living on or near diverse mucosal surfaces. These bacteria rely on specific transporters for the acquisition of host-derived sialic acids. Here, we present the first comprehensive genomic and phylogenetic analysis of bacterial sialic acid transporters, leading to the identification of multiple new families and subfamilies. Our phylogenetic analysis suggests that sialic acid-specific transport has evolved independently at least 8 times during the evolution of bacteria, from within 4 of the major families/superfamilies of bacterial transporters, and we propose a robust classification scheme to bring together a myriad of different nomenclatures that exist to date. The new transporters discovered occur in diverse bacteria including Spirochaetes, Bacteroidetes, Planctomycetes, and Verrucomicrobia, many of which are species that have not been previously recognised to have sialometabolic capacities. Two subfamilies of transporters stand out in being fused to the sialic acid mutarotase enzyme, NanM, and these transporter fusions are enriched in bacteria present in gut microbial communities. We also provide evidence for a possible function of a sialic acid transporter component in chemotaxis that is independent of transport. Our analysis supports the increasing experimental evidence that competition for host-derived sialic acid is a key phenotype for successful colonisation of complex mucosal microbiomes, such that a strong evolutionary selection has occurred for the emergence of sialic acid specificity within existing transporter architectures.


2012 ◽  
Vol 32 (3) ◽  
pp. 179-186 ◽  
Author(s):  
Mohammad Murtaza Mehdi ◽  
Prabhakar Singh ◽  
Syed Ibrahim Rizvi

Sialic acids are substituted neuraminic acid derivatives which are typically found at the outermost end of glycan chains on the membrane in all cell types. The role of erythrocyte membrane sialic acids during aging has been established however the relationship between sialic acid and oxidative stress is not fully understood. The present work was undertaken to analyze the relationship between erythrocyte membrane sialic acid with its plasma level, membrane and plasma lipid hydroperoxide levels and plasma total antioxidant capacity. Results show that sialic acid content decreases significantly (P< 0.001) in RBC membrane (r= −0.901) and increases in plasma (r= 0.860) as a function of age in humans. Lipid peroxidation measured in the form of hydroperoxides increases significantly (P< 0.001) in plasma (r= 0.830) and RBC membranes (r= 0.875) with age in humans. The Trolox Equivalent Total Antioxidant Capacity (TETAC) of plasma was found to be significantly decreased (P< 0.001,r= −0.844). We observe significant correlations between decrease of erythrocyte membrane sialic acid and plasma lipid hydroperoxide and TETAC. Based on the observed correlations, we hypothesize that increase in oxidative stress during aging may influence the sialic acid decomposition from membrane thereby altering the membrane configuration affecting many enzymatic and transporter activities. Considering the importance of plasma sialic acid as a diagnostic parameter, it is important to establish age-dependent reference.


Development ◽  
1990 ◽  
Vol 108 (3) ◽  
pp. 479-489
Author(s):  
C.M. Griffith ◽  
M.J. Wiley

Using lectin histochemistry, we have previously shown that there are alterations in the distribution of glycoconjugates in the tail bud of chick embryos that parallel the developmental sequence of the caudal axis. If glycoconjugates or the cells bearing them play a role in caudal axial development, then, restriction of their availability by binding with lectins would be expected to produce abnormalities of caudal development. In the present study, we treated embryos at various stages of tail bud development by microinjection with a variety of lectins. Administration of WGA by sub-blastodermal injection resulted in high incidences of secondary neural tube and notochordal abnormalities in lectin-treated embryos. The incidence of malformations was dependent upon both the dose of WGA received and the stage of development at the time of treatment. Using an anti-WGA antibody, we have also shown binding of the lectin in regions where defects were found. The lectin WGA binds to the sialic acid residues of glycoconjugates and to N-acetylglucosamine. Treatment of embryos with Limulus polyphemus lectin (LPL), which also binds to sialic acid, produced results similar to those of WGA. Treatments using lectins with other sugar-binding specificities, including succinylated WGA (with N-acetylglucosamine specificity only) produced defects that differed from those produced by WGA and LPL, and only with the administration of much higher doses. The results suggest that glycoconjugates in general and sialoconjugates in particular, or the cells carrying them, may have a role in caudal axial development.


Sign in / Sign up

Export Citation Format

Share Document