Time-lag effects of climatic change and drought on vegetation dynamics in an alpine river basin of the Tibet Plateau, China

2021 ◽  
pp. 126532
Author(s):  
Depeng Zuo ◽  
Yuna Han ◽  
Zongxue Xu ◽  
Peijun Li ◽  
Chunguang Ban ◽  
...  
2020 ◽  
Author(s):  
Yongxiu Sun ◽  
Shiliang Liu ◽  
Yuhong Dong ◽  
Shikui Dong ◽  
Fangning Shi

<p>Quantifying drought variations at multi-time scales is important to assess the potential impacts of climate change on terrestrial ecosystems, especially vulnerable desert grassland. Based on the Normalized Difference Vegetation Index (NDVI) and Standardized Precipitation Evapotranspiration Index (SPEI), we assessed the influences of different time-scales drought (SPEI-3, SPEI-6, SPEI-12, SPEI-24, and SPEI-48 with 3, 6, 12, 24 and 48 months, respectively) on vegetation dynamics in the Qaidam River Basin, Qinghai-Tibet Plateau. Results showed that: (1) Temporally, annual and summer NDVI increased, while spring and autumn NDVI decreased from 1998 to 2015. Annual, spring and summer SPEI increased and autumn SPEI decreased. (2) Spatially, annual, spring, summer, and autumn NDVI increased in the periphery of the Basin, with 45.98%, 22.68%, 43.90%  and 30.80% of the study area, respectively. SPEI showed a reverse variation pattern with NDVI, with an obvious decreasing trend from southeast to northwest. (3) Annual vegetation growth in most areas (69.53%, 77.33%, 86.36%, 90.19% and 85.44%) was correlated with drought at all time-scales during 1998-2015. However, high spatial and seasonal differences occurred among different time-scales, with the maximum influence in summer under SPEI24. (4) From month to annual scales, NDVI of all land cover types showed higher correlation to long-term drought of SPEI24 or SPEI48. Vegetation condition index (VCI) and SPEI were positively correlated at all time-scales and had a more obvious response in summer. The highest correlation was VCI of grassland (June-July) or forest (April-May, August-October) and SPEI48. This study contributes to exploring the effect of drought on vegetation dynamics at different time scales, further providing credible guidance for regional water resources management.</p>


2020 ◽  
Vol 141 (1-2) ◽  
pp. 117-131 ◽  
Author(s):  
Yongxiu Sun ◽  
Shiliang Liu ◽  
Yuhong Dong ◽  
Shikui Dong ◽  
Fangning Shi

Quaternary ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Zhengchen Li ◽  
Xianyan Wang ◽  
Jef Vandenberghe ◽  
Huayu Lu

The Wufo Basin at the margin of the northeastern Tibet Plateau connects the upstream reaches of the Yellow River with the lowland catchment downstream, and the fluvial terrace sequence in this basin provides crucial clues to understand the evolution history of the Yellow River drainage system in relation to the uplift and outgrowth of the Tibetan Plateau. Using field survey and analysis of Digital Elevation Model/Google Earth imagery, we found at least eight Yellow River terraces in this area. The overlying loess of the highest terrace was dated at 1.2 Ma based on paleomagnetic stratigraphy (two normal and two reversal polarities) and the loess-paleosol sequence (12 loess-paleosol cycles). This terrace shows the connections of drainage parts in and outside the Tibetan Plateau through its NE margin. In addition, we review the previously published data on the Yellow River terraces and ancient large lakes in the basins. Based on our new data and previous researches, we conclude that the modern Yellow River, with headwaters in the Tibet Plateau and debouching in the Bohai Sea, should date from at least 1.2 Ma. Ancient large lakes (such as the Hetao and Sanmen Lakes) developed as exorheic systems and flowed through the modern Yellow River at that time.


Author(s):  
H M Li ◽  
Q L He ◽  
Y X Xiao ◽  
H Y Luo ◽  
H Zhang ◽  
...  

2019 ◽  
Vol 190 ◽  
pp. 486-497 ◽  
Author(s):  
Yiming Liu ◽  
Sanzhong Li ◽  
M. Santosh ◽  
Huahua Cao ◽  
Shengyao Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document