Effects of multi-time scales drought on vegetation dynamics in Qaidam River Basin, Qinghai-Tibet Plateau from 1998 to 2015

Author(s):  
Yongxiu Sun ◽  
Shiliang Liu ◽  
Yuhong Dong ◽  
Shikui Dong ◽  
Fangning Shi

<p>Quantifying drought variations at multi-time scales is important to assess the potential impacts of climate change on terrestrial ecosystems, especially vulnerable desert grassland. Based on the Normalized Difference Vegetation Index (NDVI) and Standardized Precipitation Evapotranspiration Index (SPEI), we assessed the influences of different time-scales drought (SPEI-3, SPEI-6, SPEI-12, SPEI-24, and SPEI-48 with 3, 6, 12, 24 and 48 months, respectively) on vegetation dynamics in the Qaidam River Basin, Qinghai-Tibet Plateau. Results showed that: (1) Temporally, annual and summer NDVI increased, while spring and autumn NDVI decreased from 1998 to 2015. Annual, spring and summer SPEI increased and autumn SPEI decreased. (2) Spatially, annual, spring, summer, and autumn NDVI increased in the periphery of the Basin, with 45.98%, 22.68%, 43.90%  and 30.80% of the study area, respectively. SPEI showed a reverse variation pattern with NDVI, with an obvious decreasing trend from southeast to northwest. (3) Annual vegetation growth in most areas (69.53%, 77.33%, 86.36%, 90.19% and 85.44%) was correlated with drought at all time-scales during 1998-2015. However, high spatial and seasonal differences occurred among different time-scales, with the maximum influence in summer under SPEI24. (4) From month to annual scales, NDVI of all land cover types showed higher correlation to long-term drought of SPEI24 or SPEI48. Vegetation condition index (VCI) and SPEI were positively correlated at all time-scales and had a more obvious response in summer. The highest correlation was VCI of grassland (June-July) or forest (April-May, August-October) and SPEI48. This study contributes to exploring the effect of drought on vegetation dynamics at different time scales, further providing credible guidance for regional water resources management.</p>

2020 ◽  
Vol 141 (1-2) ◽  
pp. 117-131 ◽  
Author(s):  
Yongxiu Sun ◽  
Shiliang Liu ◽  
Yuhong Dong ◽  
Shikui Dong ◽  
Fangning Shi

2020 ◽  
Vol 12 (24) ◽  
pp. 4138
Author(s):  
Xingna Lin ◽  
Jianzhi Niu ◽  
Ronny Berndtsson ◽  
Xinxiao Yu ◽  
Linus Zhang ◽  
...  

Vegetation is an important component of the terrestrial ecosystem that plays an essential role in the exchange of water and energy in climate and biogeochemical cycles. This study investigated the spatiotemporal variation of normalized difference vegetation index (NDVI) in northern China using the GIMMS-MODIS NDVI during 1982–2018. We explored the dominant drivers of NDVI change using regression analyses. Results show that the regional average NDVI for northern China increased at a rate of 0.001 year−1. NDVI improved and degraded area corresponded to 36.1% and 9.7% of the total investigated area, respectively. Climate drivers were responsible for NDVI change in 46.2% of the study area, and the regional average NDVI trend in the region where the dominant drivers were temperature (T), precipitation (P), and the combination of precipitation and temperature (P&T), increased at a rate of 0.0028, 0.0027, and 0.0056 year−1, respectively. We conclude that P has positive dominant effects on NDVI in the subregion VIAiia, VIAiic, VIAiib, VIAib of temperate grassland region, and VIIBiia of temperate desert region in northern China. T has positive dominant effects on NDVI in the alpine vegetation region of Qinghai Tibet Plateau. NDVI is negatively dominated by T in the subregion VIIBiib, VIIBib, VIIAi, and VIIBi of temperate desert regions. Human activities affect NDVI directly by reforestation, especially in Shaanxi, Shanxi, and Hebei provinces.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hongshan Gao ◽  
Fenliang Liu ◽  
Tianqi Yan ◽  
Lin Qin ◽  
Zongmeng Li

The drainage density (Dd) is an important index to show fluvial geomorphology. The study on Dd is helpful to understand the evolution of the whole hydrological and geomorphic process. Based on the Shuttle Radar Topography Mission 90-m digital elevation model, the drainage network of basins along the eastern margin of the Qinghai–Tibet Plateau is extracted using a terrain morphology-based method in ArcGIS 10.3, and Dd is calculated. The spatial characteristics of Dd are analyzed, and the relationship between Dd and its influencing factors, e.g., the topography, precipitation, and vegetation coverage, is explored. Our results show that terrains with a plan curvature ≥3 can represent the channels in the study area. Dd ranges from 2.5 to 0.1 km/km2, increases first, and then decreases from north to south on the eastern margin of the Qinghai–Tibet Plateau. Dd decreases with increasing average slope and average local relief. On the low-relief planation surfaces, Dd increases with increasing altitude, while on the rugged mountainous above planation surfaces, Dd decreases rapidly with increasing altitude. Dd first increased and then decreased with increasing mean annual precipitation (MAP) and normalized difference vegetation index (NDVI), and Dd reaches a maximum in the West Qinling Mountains with a semi-arid environment, indicating that Dd in different climatic regions of the eastern margin of the Qinghai–Tibet Plateau was mainly controlled by precipitation and vegetation.


2021 ◽  
Vol 13 (23) ◽  
pp. 4952
Author(s):  
Xigang Liu ◽  
Yaning Chen ◽  
Zhi Li ◽  
Yupeng Li ◽  
Qifei Zhang ◽  
...  

Phenological change is an emerging hot topic in ecology and climate change research. Existing phenological studies in the Qinghai–Tibet Plateau (QTP) have focused on overall changes, while ignoring the different characteristics of changes in different regions. Here, we use the Global Inventory Modeling and Mapping Studies (GIMMS3g) normalized difference vegetation index (NDVI) dataset as a basis to discuss the temporal and spatial changes in vegetation phenology in the Qinghai–Tibet Plateau from 1982 to 2015. We also analyze the response mechanisms of pre-season climate factor and vegetation phenology and reveal the driving forces of the changes in vegetation phenology. The results show that: (1) the start of the growing season (SOS) and the length of the growing season (LOS) in the QTP fluctuate greatly year by year; (2) in the study area, the change in pre-season precipitation significantly affects the SOS in the northeast (p < 0.05), while, the delay in the end of the growing season (EOS) in the northeast is determined by pre-season air temperature and precipitation; (3) pre-season precipitation in April or May is the main driving force of the SOS of different vegetation, while air temperature and precipitation in the pre-season jointly affect the EOS of different vegetation. The differences in and the diversity of vegetation types together lead to complex changes in vegetation phenology across different regions within the QTP. Therefore, addressing the characteristics and impacts of changes in vegetation phenology across different regions plays an important role in ecological protection in this region.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chen Chen ◽  
Tiejian Li ◽  
Bellie Sivakumar ◽  
Ashish Sharma ◽  
John D. Albertson ◽  
...  

Climate warming has increased grassland productivity on the Qinghai-Tibet Plateau, while intensified grazing has brought increasing direct negative effects. To understand the effects of climate change and make sustainable management decisions, it is crucial to identify the combined effects. Here, we separate the grazing effects with a climate-driven probability model and elaborate scenario comparison, using the Normalized Difference Vegetation Index (NDVI) of the grassland on the Qinghai-Tibet Plateau. We show that grazing has positive effects on NDVI in the beginning and end of the growing season, and negative effects in the middle. Because of the positive effects, studies tend to underestimate and even ignore the grazing pressure under a warming climate. Moreover, the seasonality of grazing effects changes the NDVI-biomass relationship, influencing the assessment of climate change impacts. Therefore, the seasonality of grazing effects should be an important determinant in the response of grassland to warming in sustainability analysis.


2021 ◽  
Vol 14 (1) ◽  
pp. 151
Author(s):  
Chunya Wang ◽  
Jinniu Wang ◽  
Niyati Naudiyal ◽  
Ning Wu ◽  
Xia Cui ◽  
...  

Topographic factors are critical for influencing vegetation distribution patterns, and studying the interactions between them can enhance our understanding of future vegetation dynamics. We used the Moderate-resolution Imaging Spectroradiometer Normalized Differential Vegetation Index (MODIS NDVI) image dataset (2000–2019), combined with the Digital Elevation Model (DEM), and vegetation type data for trend analysis, and explored NDVI variation and its relationship with topographic factors through an integrated geographically-weighted model in the Three Parallel Rivers Region (TPRR) of southeastern Qinghai-Tibet Plateau (QTP) in the past 20 years. Our results indicated that there was no significant increase of NDVI in the entire basin between 2000–2019, except for the Lancang River basin. In the year 2004, abrupt changes in NDVI were observed across the entire basin and each sub-basin. During 2000–2019, the mean NDVI value of the whole basin increased initially and then decreased with the increasing elevation. However, it changed marginally with variations in slope and aspect. We observed a distinct spatial heterogeneity in vegetation patterns with elevation, with higher NDVI in the southern regions NDVI than those in the north as a whole. Most of the vegetation cover was concentrated in the slope range of 8~35°, with no significant difference in distribution except flat land. Furthermore, from 2000 to 2019, the vegetation cover in the TPRR showed an improving trend with the changes of various topographic factors, with the largest improvement area (36.10%) in the slightly improved category. The improved region was mainly distributed in the source area of the Jinsha River basin and the southern part of the whole basin. Geographically weighted regression (GWR) analysis showed that elevation was negatively correlated with NDVI trends in most areas, especially in the middle reaches of Nujiang River basin and Jinsha River basin, where the influence of slope and aspect on NDVI change was considerably much smaller than elevation. Our results confirmed the importance of topographic factors on vegetation growth processes and have implications for understanding the sustainable development of mountain ecosystems.


Author(s):  
Deyan Ge ◽  
Anderson Feijó ◽  
Zhixin Wen ◽  
Alexei V Abramov ◽  
Liang Lu ◽  
...  

Abstract For organisms to survive and prosper in a harsh environment, particularly under rapid climate change, poses tremendous challenges. Recent studies have highlighted the continued loss of megafauna in terrestrial ecosystems and the subsequent surge of small mammals, such as rodents, bats, lagomorphs, and insectivores. However, the ecological partitioning of these animals will likely lead to large variation in their responses to environmental change. In the present study, we investigated the evolutionary history and genetic adaptations of white-bellied rats (Niviventer Marshall, 1976), which are widespread in the natural terrestrial ecosystems in Asia but also known as important zoonotic pathogen vectors and transmitters. The southeastern Qinghai-Tibet Plateau (QHTP) was inferred as the origin center of this genus, with parallel diversification in temperate and tropical niches. Demographic history analyses from mitochondrial and nuclear sequences of Niviventer demonstrated population size increases and range expansion for species in Southeast Asia, and habitat generalists elsewhere. Unexpectedly, population increases were seen in N. eha, which inhabits the highest elevation among Niviventer species. Genome scans of nuclear exons revealed that among the congeneric species, N. eha has the largest number of positively selected genes. Protein functions of these genes are mainly related to olfaction, taste and tumor suppression. Extensive genetic modification presents a major strategy in response to global changes in these alpine species.


Sign in / Sign up

Export Citation Format

Share Document