Postprocessing of hydrometeorological ensemble forecasts based on multisource precipitation in Ganjiang River basin, China

2021 ◽  
pp. 127323
Author(s):  
Xin Liu ◽  
Liping Zhang ◽  
Dunxian She ◽  
Jie Chen ◽  
Jun Xia ◽  
...  
2020 ◽  
Vol 20 (1) ◽  
pp. 151-157
Author(s):  
Jingsong Shi

AbstractThe production and use of bronzes had significant influences on the social developments even the formation of the early states. However, in different areas, the bronzes played different roles. By observing the different characteristics of the bronzes in the Central Plains, the Ganjiang River basin, the Xiangjiang River basin, and the Chengdu Plains, various developments of societies can be revealed. The case studies of these areas can further explain the complex relationships between the bronzes and their societies, as well as the diversity of the patterns of the developments of the ancient societies.


2019 ◽  
Author(s):  
Peibing Song ◽  
Xiaoying Wang ◽  
Chao Wang ◽  
Jiahui Sun ◽  
Gongbo Ding ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2661
Author(s):  
Yongfen Zhang ◽  
Chongjun Tang ◽  
Aizhong Ye ◽  
Taihui Zheng ◽  
Xiaofei Nie ◽  
...  

Quantitatively figuring out the effects of climate and land-use change on water resources and their components is essential for water resource management. This study investigates the effects of climate and land-use change on blue and green water and their components in the upper Ganjiang River basin from the 1980s to the 2010s by comparing the simulated changes in blue and green water resources by using a Soil and Water Assessment Tool (SWAT) model forced by five climate and land-use scenarios. The results suggest that the blue water flow (BWF) decreased by 86.03 mm year−1, while green water flow (GWF) and green water storage (GWS) increased by 8.61 mm year−1 and 12.51 mm year−1, respectively. The spatial distribution of blue and green water was impacted by climate, wind direction, topography, and elevation. Climate change was the main factor affecting blue and green water resources in the basin; land-use change had strong effects only locally. Precipitation changes significantly amplified the BWF changes. The proportion of surface runoff in BWF was positively correlated with precipitation changes; lateral flow showed the opposite tendency. Higher temperatures resulted in increased GWF and decreased BWF, both of which were most sensitive to temperature increases up to 1 °C. All agricultural land and forestland conversion scenarios resulted in decreased BWF and increased GWF in the watershed. GWS was less affected by climate and land-use change than GWF and BWF, and the trends in GWS were not significant. The study provides a reference for blue and green water resource management in humid areas.


2020 ◽  
Vol 29 (2) ◽  
pp. 1849-1868
Author(s):  
Wang Shu ◽  
Peng Wang ◽  
Jun Zhao ◽  
Xiaofang Yu ◽  
Qiyu Xu

2019 ◽  
Vol 11 (21) ◽  
pp. 6138 ◽  
Author(s):  
Kai Xiong ◽  
Ning Zhang ◽  
Chih-Chun Kung ◽  
Fanbin Kong

Using the contingent valuation method and the Heckman two-stage model, we explore residents’ willingness to accept (WTA) compensation and their WTA level for ecological conservation compensation in the upstream of the Ganjiang River Basin in China. The findings reveal that 86.26% of the respondents are willing to accept compensation, and the average compensation level is ¥789.60/household per year. The residents’ gender, annual disposable income, residential location, decision on whether or not the watershed environment is important, and their satisfaction with water quality and quantity are significantly related to their WTA. The influencing factors that significantly affect compensation level are residents’ occupation, educational background, annual disposable income, family size, residential location, decision on whether or not the watershed environment is important, and their satisfaction with water quality and quantity. The results of this empirical research have important policy implications: the government should strengthen advocacy and education of watershed ecological environment protection, intensify farming and other agricultural activities, establish a differentiated and diversified compensation strategy, so as to protect and improve the ecological environment of the Ganjiang River Basin.


2019 ◽  
Vol 11 (18) ◽  
pp. 4882 ◽  
Author(s):  
Yinghou Huang ◽  
Binbin Huang ◽  
Tianling Qin ◽  
Hanjiang Nie ◽  
Jianwei Wang ◽  
...  

Runoff is the key driving factor of the Ganjiang River ecosystem. Human activities such as reservoir construction have greatly changed the state of runoff. In order to analyze the influence of Ganjiang Reservoir on the hydrological regime, the following paper is based on the daily precipitation data of 53 rainfall stations in Ganjiang River Basin from 1959 to 2016, and the daily runoff data of three stations in Dongbei, Ji’an, and Waizhou from 1959 to 2016. The Mann–Kendall test (MK) was used to analyze the trend of precipitation and runoff in Ganjiang River Basin. The Sliding t-Test (ST) was used to determine the abrupt change time of runoff in flood season within typical cross-sections of upper, middle, and lower reaches of Ganjiang River Basin, Ji’an, and Waizhou. Indicators of hydrological change (IHA), range of variability approach (RVA), and other methods were used to analyze the changes of 32 hydrological indicators in Ganjiang River Basin. The results showed that (1) The annual and flood season precipitation in Ganjiang River Basin increased from 1992 to 2016, but it did not reach a significant level. The change of annual runoff at Dongbei and Waizhou Stations was the same as that of the annual precipitation in Ganjiang River Basin. The runoff of Dongbei Station in flood season decreased from 1986 to 2016, and the runoff of Waizhou Railway Station in flood season decreased from 2008 to 2016. It showed that precipitation had a great influence on annual runoff, and human activities made the annual runoff distribution process more uniform; (2) The abrupt changes of runoff in flood season at three hydrological stations in Ganjiang River Basin occurred in 1991, and reached a significant level of 0.01; (3) There were five hydrological indicators of Dongbei Station which had reached height change. The change degree of low (l) pulse duration was −92.24%, the change degree of high (h) pulse count was −86.8%, the change degree of flow rise rate was 87.06%, the change degree of fall rate was −92.24%, and the change degree of number of reversals was −100%. Four hydrological indicators of Ji’an Station had reached high change degree, the count and duration of high pulse changes were −73.33% and −73.65%, the change degree of fall rate was −79%, and the change degree of number of reversals was −100%. Waizhou Station did not reach the high change indicator. The hydrological regime of the upper and middle reaches of Ganjiang River has changed greatly, while the hydrological regime of the lower reaches has changed little. The hydrological regime in the upper and middle reaches of Ganjiang River Basin has been highly changed by human activities such as dam construction. The change of hydrological conditions in the upper and middle reaches of Ganjiang River Basin may reduce the area of aquatic organisms’ habitat, be harmful to the spawning, migration, and survival of aquatic organisms, reduce the interception of organic matter in floodplains, and increase the drought pressure of plants. The reservoir ecological operation of rivers with numerous reservoirs should be considered, joint reservoir dispatching schemes should be formulated for the study area so as to maximize the comprehensive benefits. This study provides a reference for water resources management and reservoir operation in Ganjiang River Basin. The next step is to use a habitat model to simulate the habitat of Ganjiang River Basin.


Sign in / Sign up

Export Citation Format

Share Document