scholarly journals Targeted Knockout of β-Catenin in Adult Melanocyte Stem Cells Using a Mouse Line, Dct::CreERT2, Results in Disrupted Stem Cell Renewal and Pigmentation Defects

Author(s):  
Madeleine Le Coz ◽  
Zackie Aktary ◽  
Natsuki Watanabe ◽  
Ichiro Yajima ◽  
Marie Pouteaux ◽  
...  
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 371-371 ◽  
Author(s):  
Rashmi Gupta ◽  
Simon Karpatkin ◽  
Ross Basch

Abstract Many of the events that occur within the bone marrow can be modeled in long-term bone marrow cultures (LTBMC), which are capable of producing stem cells. Although the cultures faithfully replicate the differentiation of many hematopoietic lineages, they are relatively short-lived. The stem cell compartment is rapidly depleted and attempts to achieve expansion of hematopoietic cells in culture have met with limited success. These cultures accumulate large numbers of granulocytes and monocytes capable of producing significant levels of reactive oxygen species (ROS). It has recently become clear that some ROS, including H2O2 can play a critical role in intracellular signalling induced by various growth factors and cytokines. We therefore elected to test the effect of 2 different H2O2 scavenger catalases, (bovine or aspergillosis added on alternate days) on LTBMC hematopoiesis of mouse low density bone marrow cells on irradiated adherent preformed stromal monolayers. Dramatic alterations were noted with either catalase, whereas heat-inactivated catalase had no effect. Initially there is a 5–10 fold increase in the non-adherent granulocytes and their precursors. The increase is relatively short-lived at 3–4 weeks when catalase cultures contain 1/5 as many hematopoietic cells as controls. However these cells contain 5 times the number of myeloid clonal progenitors (CFU-c) than controls. After 4–5 weeks the catalase treated cells become quiescent. When catalase is removed hematopoiesis returns promptly, ruling out a catalase-induced toxic effect. By the 3rd week of catalase treatment >90% of non-adherent cells are Sca-1+ and 36% of them are Lin−. In absolute numbers the Sca-1+ and Lin− population increase 80 fold at 3 weeks. If losses induced by removal of half of the non-adherent cells with each weekly feeding are considered, the absolute increase is >500 fold. Virtually all of the Sca-1+, Lin− cells express C-Kit+. At 2–3 weeks, approximately 15% of cells recovered from the catalase cultures have this stem cell phenotype described for murine cells, which represents a 200 fold increase in stem cells compared to controls. These cells (20,000 Ly 5.1 cells) were then tested for their ability to sustain both short- and long-term hematopoiesis in lethally irradiated Ly 5.2 mice along with 30,000 freshly isolated Ly 5.2 bone marrow cells. The catalase-treated cells showed both short- and long-term repopulating activity. At 3,6 and 10 weeks sorted Sca-1+, Lin− catalase-treated Ly 5.1 cells were 14,20 and 39% respectively of host cells, compared to 1,3 and 5% of cells cultured without catalase. These catalase-treated cells underwent multilinege repopulation granulocytes (Gr-1+), monocytes (mac-1+), T-cells (CD3+) and B− cells (B-220+) in the Ly 5.2 host. Thus, peroxide-sensitive regulatory mechanisms play an important role in regulating hematopoietic stem cell renewal and differentiation. Protected from H2O2, hematopoietic progenitors multiply and become quiescent. These cells are 200–500 fold enriched with functional stem cells. Manipulation of peroxide levels in vitro can dramatically enhance the growth of self-renewing hematopoietic stem cells and may provide a unique source of undifferentiated hematopoietic progenitors.


Reproduction ◽  
2001 ◽  
pp. 347-354 ◽  
Author(s):  
DG de Rooij

Spermatogonial stem cells (A(s) spermatogonia) are single cells that either renew themselves or produce A(pr) (paired) spermatogonia predestined to differentiate. In turn, the A(pr) divide into chains of A(al) (aligned) spermatogonia that also divide. The ratio between self-renewal and differentiation of the stem cells is regulated by glial cell line-derived neurotrophic factor produced by Sertoli cells, while the receptors are expressed in stem cells. A(s), A(pr) and A(al) spermatogonia proliferate during part of the epithelial cycle forming many A(al) spermatogonia. During epithelial stage VIII, almost all A(al) spermatogonia, few A(pr) and very few A(s) spermatogonia differentiate into A1 spermatogonia. A number of molecules are involved in this differentiation step including the stem cell factor-c-kit system, the Dazl RNA binding protein, cyclin D(2) and retinoic acid. There is no fine regulation of the density of spermatogonial stem cells and consequently, in some areas, many A1 and, in other areas, few A1 spermatogonia are formed. An equal density of spermatocytes is then obtained by the apoptosis of A2, A3 or A4 spermatogonia to remove the surplus cells. The Bcl-2 family members Bax and Bcl-x(L) are involved in this density regulation. Several mechanisms are available to cope with major or minor shortages in germ cell production. After severe cell loss, stem cell renewal is preferred above differentiation and the period of proliferation of A(s), A(pr) and A(al) spermatogonia is extended. Minor shortages are dealt with, at least in part, by less apoptosis among A2-A4 spermatogonia.


2014 ◽  
Vol 12 (2) ◽  
pp. 338-353 ◽  
Author(s):  
Hsiao-Ning Huang ◽  
Shao-Yin Chen ◽  
Shiaw-Min Hwang ◽  
Ching-Chia Yu ◽  
Ming-Wei Su ◽  
...  

2009 ◽  
Vol 2 (92) ◽  
pp. ra62-ra62 ◽  
Author(s):  
D. Iliopoulos ◽  
C. Polytarchou ◽  
M. Hatziapostolou ◽  
F. Kottakis ◽  
I. G. Maroulakou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document