Skin Abnormalities in Disorders with DNA Repair Defects, Premature Aging, and Mitochondrial Dysfunction

Author(s):  
Mansoor Hussain ◽  
Sudarshan Krishnamurthy ◽  
Jaimin Patel ◽  
Edward Kim ◽  
Beverly A. Baptiste ◽  
...  
1998 ◽  
Vol 3 (1) ◽  
pp. 11-13 ◽  
Author(s):  
Vilhelm A Bohr ◽  
Grigoiy Dianov ◽  
Adayabalam Balajee ◽  
Alfred May ◽  
David K Orren
Keyword(s):  

Author(s):  
Li Gao ◽  
Min Wang ◽  
Linfeng Liao ◽  
Na Gou ◽  
Piao Xu ◽  
...  

Abstract The mitochondrial theory of aging postulates that accumulation of mtDNA mutations and mitochondrial dysfunction are responsible for producing aging phenotypes. To more comprehensively explore the complex relationship between aging and mitochondria dysfunction, we have developed a mouse model with Slc25a46 knock out, a nuclear gene described as encoding mitochondrial carriers, by CRISPR/Cas9 gene editing to mimic some typical aging phenotypes in human. Slc25a46-/- mice present segmental premature aging phenotypes characterized by shortened lifespan of no more than two months, obviously defective motor ability, gastrocnemius muscle atrophy and imbalance of redox level in brain and liver. The underlying mechanism for multiple organ disorder may attribute to the mitochondrial dysfunction, which is mainly manifested on the damaged mitochondrial structure (e.g., vacuolar structure, irregular swelling and disorganized cristae) and an age-associated decrease in respiratory chain enzyme (mainly complex I and IV) activity. In summary, our study suggests that the Slc25a46-/- mouse is a valid animal model for segmental aging-related pathologies studies based on mitochondrial theory, generating a new platform to both understand mechanisms between aging and mitochondria dysfunction as well as to design mitochondria based therapeutic strategies to improve mitochondrial quality, and thereby the overall healthspan.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sahar Elouej ◽  
Karim Harhouri ◽  
Morgane Le Mao ◽  
Genevieve Baujat ◽  
Sheela Nampoothiri ◽  
...  

Abstract Mandibuloacral dysplasia syndromes are mainly due to recessive LMNA or ZMPSTE24 mutations, with cardinal nuclear morphological abnormalities and dysfunction. We report five homozygous null mutations in MTX2, encoding Metaxin-2 (MTX2), an outer mitochondrial membrane protein, in patients presenting with a severe laminopathy-like mandibuloacral dysplasia characterized by growth retardation, bone resorption, arterial calcification, renal glomerulosclerosis and severe hypertension. Loss of MTX2 in patients’ primary fibroblasts leads to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients’ fibroblasts are resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Interestingly, secondary nuclear morphological defects are observed in both MTX2-mutant fibroblasts and mtx-2-depleted C. elegans. We thus report the identification of a severe premature aging syndrome revealing an unsuspected link between mitochondrial composition and function and nuclear morphology, establishing a pathophysiological link with premature aging laminopathies and likely explaining common clinical features.


1999 ◽  
Vol 10 (11) ◽  
pp. 3583-3594 ◽  
Author(s):  
Robert M. Brosh ◽  
Adayabalam S. Balajee ◽  
Rebecca R. Selzer ◽  
Morten Sunesen ◽  
Luca Proietti De Santis ◽  
...  

Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA andCSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, theCSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.


Author(s):  
Mustafa N. Okur ◽  
Evandro F. Fang ◽  
Elayne M. Fivenson ◽  
Vinod Tiwari ◽  
Deborah L. Croteau ◽  
...  

AbstractBackgroundCockayne syndrome (CS) is a rare premature aging disease, most commonly caused by mutations of the genes encoding the CSA or CSB proteins. CS patients display cachectic dwarfism and severe neurological manifestations and have an average life expectancy of 12 years. The CS proteins are involved in transcription and DNA repair, with the latter including transcription-coupled nucleotide excision repair (TC-NER). However, there is also evidence for mitochondrial dysfunction in CS, which likely contributes to the severe premature aging phenotype of this disease. While damaged mitochondria and impaired mitophagy were characterized in mice with CSB deficiency, such changes in the CS nematodes and CS patients are not fully known.ResultsOur cross-species transcriptomic analysis in CS postmortem brain tissue, CS mouse and nematode models show that mitochondrial dysfunction is indeed a common feature in CS. Restoration of mitochondrial dysfunction through NAD+ supplementation significantly improved lifespan and healthspan in the CS nematodes, highlighting mitochondrial dysfunction as a major driver of the aging features of CS. In cerebellar samples from CS patients, we found molecular signatures of dysfunctional mitochondrial dynamics and impaired mitophagy/autophagy. In primary cells depleted for CSA or CSB, this dysfunction can be corrected with NAD+ supplementation.ConclusionsOur study provides support for the interconnection between major causative aging theories, DNA damage accumulation, mitochondrial dysfunction, and compromised mitophagy/autophagy. Together these three agents contribute to an accelerated aging program that can be averted by NAD+ supplementation.


2015 ◽  
Vol 146-148 ◽  
pp. 42-52 ◽  
Author(s):  
Lindsay A. Bonsignore ◽  
John G. Tooley ◽  
Patrick M. Van Hoose ◽  
Eugenia Wang ◽  
Alan Cheng ◽  
...  

1998 ◽  
Vol 3 (1) ◽  
pp. 11-13 ◽  
Author(s):  
Vilhelm A. Bohr ◽  
Grigoiy Dianov ◽  
Adayabalam Balajee ◽  
Alfred May ◽  
David K. Orren
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document