Catalytic decomposition of hydrogen peroxide aerosols using granular activated carbon coated with manganese oxides

2018 ◽  
Vol 62 ◽  
pp. 225-230 ◽  
Author(s):  
Ki Min Kwon ◽  
In Gyeom Kim ◽  
Yun-Sik Nam ◽  
Jaeyoung Choi ◽  
Won Il Cho ◽  
...  
2018 ◽  
Vol 4 (10) ◽  
pp. 1662-1670 ◽  
Author(s):  
Yifeng Huang ◽  
Zhijie Nie ◽  
Chengjin Wang ◽  
Yi Li ◽  
Mindy Xu ◽  
...  

Pilot-scale and lab-scale experiments were performed to evaluate the ability of granular activated carbon (GAC) to quench hydrogen peroxide (H2O2).


2001 ◽  
Vol 44 (5) ◽  
pp. 69-74 ◽  
Author(s):  
G.O. Sigge ◽  
T.J. Britz ◽  
P.C. Fourie ◽  
C.A. Barnardt ◽  
R. Strydom

UASB treatment of cannery effluents was shown to be feasible. However, the treated effluent still does not allow direct discharge to a water system and a further form of post-treatment is necessary to reduce the COD to lower than the legal limit of 75 mg/l. The use of ozone, hydrogen peroxide and granular activated carbon were used singly or in combination to assess the effectiveness as post-treatment options for the UASB treated alkaline fruit cannery effluent. Colour reduction in the effluent ranged from 15% to 92% and COD reductions of 26-91% were achieved. Combinations of ozone and hydrogen peroxide gave better results than either oxidant singly. The best results were achieved by combining ozone, hydrogen peroxide and granular activated carbon, and COD levels were reduced to levels sufficiently below the 75 mg/l limit.


2020 ◽  
Vol 86 (8) ◽  
pp. 111-125
Author(s):  
Olexandr Ivanenko ◽  
Anatoliy Omel’chuk ◽  
Tamara Pavlenko ◽  
Yuliia Pohorenko ◽  
Valerii Bikov

Cobalt and manganese oxides and their complex oxide compositions were obtained by the sol-gel method using various precipitators(ammonia solution and HMTA). It was determined by X-ray diffraction method that both individual and co-precipitated hydroxo compounds after calcination at 400 °С form oxide phases of Co3O4 and Mn3O4 composition. Samples obtained by sedimentation with ammonia solution have a larger specific surface area than synthesized in HMTA solution. When calcined at 400 °C, the specific surface area for cobalt-containing samples sedimentated with ammonia solution decreases, and for samples sedimentated from HMTA solution - increases. The pore volume depends on the precipitator and changes little during calcination. For co-sedimentated and calcined at 400 °C samples, the specific surface area plays a significant role: the higher it is, the greater the catalytic ability of the sample to decompose hydrogen peroxide. On the SEM image of samples driedat 100 °C, sedimentated with ammonia solution, agglomeration of flat particles of gitrated oxides of cobalt and/or manganese of globular form is observed. For samples deposited in HMTA solution, SEM images are represented by agglomeration of particles in the form of planar layers. Calcination at 400 °C partially destroys the structure. Kinetic studies of the decomposition of hydrogen peroxide with theparticipation of the obtained samples indicate the first order of the reaction. Samples of cobalt hydroxide and co-sedimentated cobalt and manganese hydroxy compounds synthesized in HMTA solution showed the best ability to catalyze. The highest productivity (dm3 H2O2 of decomposed 1 g of catalyst) is inherent in samples of cobalt hydroxy compounds and its composition with manganese compounds synthesized by HMTA, after heat treatment at 100 °C. The ability of such samples to catalytic decomposition of hydrogen peroxide is estimated to be not less than 2.4 dm3 H2O2 (14 days). Compared to compounds synthesizedwith ammonia solution, they retain their activity for a longer time.


Author(s):  
Andrey P. Artemyanov ◽  
Larisa A. Zemskova

Adsorption and catalytic decomposition of 3- and 4-chlorophenols in the presence of hydrogen peroxide were studied for estimation of efficiency of the adsorption and catalytic methods for purification of solutions from chlorophenols related to special group of the priority toxic water pollutants. Activated carbon fiber and fiber modified with iron/iron oxide having highly developed surface and porous structure were used as the adsorbents. It was shown that adsorption of chlorophenols on the initial carbon fiber was higher as compared to the modified one and equaled to 309 mg/g for 3-chlorophenol and 301 mg/g for 4-chlorophenol. The sorption isotherm of 4-chlorophenol on the initial fiber is described by Langmuir equation with constant equals to 0.065 L/mg, while for composite sorbent constant equals to 0.037 L/mg. It was discovered that removal of chlorophenols from aqueous solutions in the processes of catalytic oxidation in the presence of a heterogeneous catalyst was more efficient than that in the adsorption process. Experimental data have been obtained on the dependence of the concentration of 3-and 4-chlorophenols on the time of destruction at specified pH values and the ratios of the pollutant and hydrogen peroxide. With an increase in the 4-chlorophenol: H2O2 ratio from 1:1 to 1:6, the degree of chlorophenol destruction increases from 75% to 88% (pH 3); when the pH changes from 1 to 9, the greatest degree of destruction is 70% (3-CP) and 87% (4-CP) was achieved at pH 3 (chlorophenol: H2O2 1:4). It was shown that in the system chlorophenol / H2O2 / catalyst there are optimal parameters (pH is 3 and chlorophenol : H2O2 ratio is 1:6), which provide the most complete removal of chlorophenol from solution. The results of chromatography-mass spectrometry analysis show that during contact with the modified fiber, the content of 4-CP decreases dramatically and degradation products are formed (for example, maleic acid), which is consistent with the known schemes for the oxidative destruction of chlorophenols.


2011 ◽  
Vol 243-249 ◽  
pp. 4860-4863
Author(s):  
Zhen Zhong Liu ◽  
Hui Ping Deng ◽  
Zhan Li Chen

Modified activated carbon composites were prepared and their catalytic properties were evaluated in the H2O2decomposition. Activated carbon alone showed very low activities compared to iron and manganese oxides / activated carbon composites, suggesting that the presence of Fe and Mn in the oxide plays an important role for the activation of H2O2. The presence of Mn in the composite structure produced a remarkable increase in the reactivity. The obtained results showed that the peroxide decomposition catalyzed by GACFM met pseudo-first-order kinetic and the maximum OH· production was on GACF1M3.The decomposition mechanism of H2O2was analyzed in detail.


Sign in / Sign up

Export Citation Format

Share Document