3D printed cell-laden collagen and hybrid scaffolds for in vivo articular cartilage tissue regeneration

2018 ◽  
Vol 66 ◽  
pp. 343-355 ◽  
Author(s):  
YoungWon Koo ◽  
Eun-Ji Choi ◽  
JaeYoon Lee ◽  
Han-Jun Kim ◽  
GeunHyung Kim ◽  
...  
2014 ◽  
Vol 103 (4) ◽  
pp. 1404-1413 ◽  
Author(s):  
Young-Joon Seol ◽  
Ju Young Park ◽  
Wonju Jeong ◽  
Tae-Ho Kim ◽  
Shin-Yoon Kim ◽  
...  

Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

Author(s):  
Ming-You Shie ◽  
Wen-Ching Chang ◽  
Li-Ju Wei ◽  
Yu-Hsin Huang ◽  
Chien-Han Chen ◽  
...  

Diseases in articular cartilages have affected millions of people globally. Although the biochemical and cellular composition of articular cartilages is relatively simple, there is the limitation in self-repair ability of cartilage. Therefore, developing the strategies for cartilage repair is very important. Here, we reported a new manufacturing process of water-based polyurethane based photosensitive materials with hyaluronic acid and applied the materials for 3D printed customized cartilage scaffolds. The scaffold has high cytocompatibility and is one that closely mimics the mechanical properties of articular cartilages. It is suitable for culturing human Wharton's jelly mesenchymal stem cells (hWJMSCs) and the cells showed an excellent chondrogenic differentiation capacity. We consider that the 3D printing hybrid scaffolds may have potential in customized tissue engineering and facilitate the development of cartilage tissue engineering.


Osteology ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 149-174
Author(s):  
Naveen Jeyaraman ◽  
Gollahalli Shivashankar Prajwal ◽  
Madhan Jeyaraman ◽  
Sathish Muthu ◽  
Manish Khanna

The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.


2020 ◽  
Vol 245 (4) ◽  
pp. 348-359 ◽  
Author(s):  
Yang Li ◽  
Xun Chen ◽  
Beckham Watkins ◽  
Neal Saini ◽  
Steven Gannon ◽  
...  

Chondrocyte viability is a crucial factor for evaluating cartilage health. Most prevalent cell viability assays rely on dyes and are not applicable for in vivo or longitudinal studies. Here we demonstrated that the two-photon excited autofluorescence and second harmonic generation microscopy provided high-resolution imaging of cartilage tissue and distinguished live/dead chondrocytes by visual assessment. Furthermore, the normalized autofluorescence ratio was proposed as a quantitative indicator to determine chondrocyte viability. Based on the indicator, a curve fitting and simulated receiver operating characteristic method was proposed to identify the live/dead cell populations as well as the indicator threshold without dye labeling. Thus, it established the label-free imaging method for chondrocyte viability assay in cartilage tissue. Impact statement Chondrocytes are the only cellular component found in the cartilage, playing a critical role in maintaining the homeostasis of articular cartilage. The viability of chondrocytes is a crucial factor for evaluating cartilage health. However, the current prevalent cell viability assays rely on dye staining and thereby are not applicable in vivo or in longitudinal assessments. In this study, we demonstrate that the intrinsic signals such as two-photon excited autofluorescence and second harmonic generation can be used to classify live and dead chondrocytes in cartilage tissue. A quantitative measure is also proposed allowing development of automated assessment algorithms. The nonlabeling nature of this method suggests the potential applicability to nondestructive and in vivo assessment of cartilage health.


2017 ◽  
Vol 9 (10) ◽  
pp. 8589-8601 ◽  
Author(s):  
Fanyi Li ◽  
Vinh X. Truong ◽  
Helmut Thissen ◽  
Jessica E. Frith ◽  
John S. Forsythe

2020 ◽  
Vol 7 (6) ◽  
pp. 583-595
Author(s):  
Xiuyu Wang ◽  
Yan Lu ◽  
Wan Wang ◽  
Qiguang Wang ◽  
Jie Liang ◽  
...  

Abstract Extracellular matrix (ECM)-based biomaterials are promising candidates in cartilage tissue engineering by simulating the native microenvironment to regulate the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) without exogenous growth factors. The biological properties of ECM scaffolds are primarily depended on the original source, which would directly influence the chondrogenic effects of the ECM materials. Despite the expanding investigations on ECM scaffolds in recent years, the selection of optimized ECM materials in cartilage regeneration was less reported. In this study, we harvested and compared the articular cartilage ECM from newborn, juvenile and adult rabbits. The results demonstrated the significant differences in the mechanical strength, sulphated glycosaminoglycan and collagen contents of the different aged ECM, before and after decellularization. Consequently, different compositional and mechanical properties were shown in the three ECM-based collagen hydrogels, which exerted age-dependent chondrogenic inducibility. In general, both in vitro and in vivo results suggested that the newborn ECM promoted the most chondrogenesis of BMSCs but led to severe matrix calcification. In contrast, BMSCs synthesized the lowest amount of cartilaginous matrix with minimal calcification with adult ECM. The juvenile ECM achieved the best overall results in promoting chondrogenesis of BMSCs and preventing matrix calcification. Together, this study provides important information to our current knowledge in the design of future ECM-based biomaterials towards a successful repair of articular cartilage.


2004 ◽  
Vol 08 (04) ◽  
pp. 145-154 ◽  
Author(s):  
C. W. Jones ◽  
D. Smolinski ◽  
J. P. Wu ◽  
C. Willers ◽  
K. Miller ◽  
...  

The purpose of this study was to determine the effectiveness of a novel Laser Scanning Confocal Arthroscope (LSCA) for the morphological quantification of articular cartilage chondrocytes. Healthy and debrided regions of the knee articular cartilage of six (6) New Zealand White rabbits were imaged during open follow-up surgery. Quantitative morphological analysis of chondrocyte cell populations was performed and compared to known parameters. Optical histology images were compared to conventional histology of similar sites. Optical histology revealed viable cells in normal hyaline cartilage tissue and enabled the visualization of fibro-cartilage in defect tissue. Morphological analysis was able to characterize the in vivo two-dimensional equivalent-area-diameter of chondrocytes. Significant differences (P<0.05) were seen between the morphology of chondrocytes observed in optical and conventional histology. This study concludes that the LSCA is capable of illustrating the surface and sub-surface appearance of healthy and defect articular cartilage, thereby providing a non-destructive method for assessing cartilage condition in vivo. In this role the LSCA may find application in the investigation of cartilage pathologies or repair techniques.


Sign in / Sign up

Export Citation Format

Share Document