scholarly journals T cell hybridomas to study MHC-II restricted B-cell receptor-mediated antigen presentation by human B cells

2011 ◽  
Vol 370 (1-2) ◽  
pp. 35-42 ◽  
Author(s):  
Matthew B. Bartley ◽  
David H. Canaday
2000 ◽  
Vol 165 (2) ◽  
pp. 830-839 ◽  
Author(s):  
Hong Zan ◽  
Zongdong Li ◽  
Kozaburo Yamaji ◽  
Patricia Dramitinos ◽  
Andrea Cerutti ◽  
...  

2020 ◽  
Vol 117 (42) ◽  
pp. 26318-26327
Author(s):  
Kamonwan Fish ◽  
Federico Comoglio ◽  
Arthur L. Shaffer ◽  
Yanlong Ji ◽  
Kuan-Ting Pan ◽  
...  

Epstein–Barr virus (EBV) infects human B cells and reprograms them to allow virus replication and persistence. One key viral factor in this process is latent membrane protein 2A (LMP2A), which has been described as a B cell receptor (BCR) mimic promoting malignant transformation. However, how LMP2A signaling contributes to tumorigenesis remains elusive. By comparing LMP2A and BCR signaling in primary human B cells using phosphoproteomics and transcriptome profiling, we identified molecular mechanisms through which LMP2A affects B cell biology. Consistent with the literature, we found that LMP2A mimics a subset of BCR signaling events, including tyrosine phosphorylation of the kinase SYK, the calcium initiation complex consisting of BLNK, BTK, and PLCγ2, and its downstream transcription factor NFAT. However, the majority of LMP2A-induced signaling events markedly differed from those induced by BCR stimulation. These included differential phosphorylation of kinases, phosphatases, adaptor proteins, transcription factors such as nuclear factor κB (NF-κB) and TCF3, as well as widespread changes in the transcriptional output of LMP2A-expressing B cells. LMP2A affected apoptosis and cell-cycle checkpoints by dysregulating the expression of apoptosis regulators such as BCl-xL and the tumor suppressor retinoblastoma-associated protein 1 (RB1). LMP2A cooperated with MYC and mutant cyclin D3, two oncogenic drivers of Burkitt lymphoma, to promote proliferation and survival of primary human B cells by counteracting MYC-induced apoptosis and by inhibiting RB1 function, thereby promoting cell-cycle progression. Our results indicate that LMP2A is not a pure BCR mimic but rather rewires intracellular signaling in EBV-infected B cells that optimizes cell survival and proliferation, setting the stage for oncogenic transformation.


Immunology ◽  
2008 ◽  
Vol 125 (4) ◽  
pp. 570-590 ◽  
Author(s):  
Yohei Saito ◽  
Yoshitaka Miyagawa ◽  
Keiko Onda ◽  
Hideki Nakajima ◽  
Ban Sato ◽  
...  

2008 ◽  
Vol 45 (15) ◽  
pp. 3926-3933 ◽  
Author(s):  
Seung Y. Chu ◽  
Igor Vostiar ◽  
Sher Karki ◽  
Gregory L. Moore ◽  
Greg A. Lazar ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Zhiyong Yang ◽  
Marcus J Robinson ◽  
Xiangjun Chen ◽  
Geoffrey A Smith ◽  
Jack Taunton ◽  
...  

IgE can trigger potent allergic responses, yet the mechanisms regulating IgE production are poorly understood. Here we reveal that IgE+ B cells are constrained by chronic activity of the IgE B cell receptor (BCR). In the absence of cognate antigen, the IgE BCR promoted terminal differentiation of B cells into plasma cells (PCs) under cell culture conditions mimicking T cell help. This antigen-independent PC differentiation involved multiple IgE domains and Syk, CD19, BLNK, Btk, and IRF4. Disruption of BCR signaling in mice led to consistently exaggerated IgE+ germinal center (GC) B cell but variably increased PC responses. We were unable to confirm reports that the IgE BCR directly promoted intrinsic apoptosis. Instead, IgE+ GC B cells exhibited poor antigen presentation and prolonged cell cycles, suggesting reduced competition for T cell help. We propose that chronic BCR activity and access to T cell help play critical roles in regulating IgE responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chun-Shu Wong ◽  
Clarisa M. Buckner ◽  
Silvia Lucena Lage ◽  
Luxin Pei ◽  
Felipe L. Assis ◽  
...  

Low nadir CD4 T-cell counts in HIV+ patients are associated with high morbidity and mortality and lasting immune dysfunction, even after antiretroviral therapy (ART). The early events of immune recovery of T cells and B cells in severely lymphopenic HIV+ patients have not been fully characterized. In a cohort of lymphopenic (CD4 T-cell count < 100/µL) HIV+ patients, we studied mononuclear cells isolated from peripheral blood (PB) and lymph nodes (LN) pre-ART (n = 40) and 6-8 weeks post-ART (n = 30) with evaluation of cellular immunophenotypes; histology on LN sections; functionality of circulating T follicular helper (cTfh) cells; transcriptional and B-cell receptor profile on unfractionated LN and PB samples; and plasma biomarker measurements. A group of 19 healthy controls (HC, n = 19) was used as a comparator. T-cell and B-cell lymphopenia was present in PB pre-ART in HIV+ patients. CD4:CD8 and CD4 T- and B-cell PB subsets partly normalized compared to HC post-ART as viral load decreased. Strikingly in LN, ART led to a rapid decrease in interferon signaling pathways and an increase in Tfh, germinal center and IgD-CD27- B cells, consistent with histological findings of post-ART follicular hyperplasia. However, there was evidence of cTfh cells with decreased helper capacity and of limited B-cell receptor diversification post-ART. In conclusion, we found early signs of immune reconstitution, evidenced by a surge in LN germinal center cells, albeit limited in functionality, in HIV+ patients who initiate ART late in disease.


Blood ◽  
2009 ◽  
Vol 113 (19) ◽  
pp. 4566-4574 ◽  
Author(s):  
James Schuman ◽  
Yuhong Chen ◽  
Andrew Podd ◽  
Mei Yu ◽  
Hong-Hsing Liu ◽  
...  

Abstract The kinase TAK1 is essential for T-cell receptor (TCR)–mediated nuclear factor κB (NF-κB) activation and T-cell development. However, the role of TAK1 in B-cell receptor (BCR)–mediated NF-κB activation and B-cell development is not clear. Here we show that B-cell–specific deletion of TAK1 impaired the transition from transitional type 2 to mature follicular (FO) B cells and caused a marked decrease of marginal zone (MZ) B cells. TAK1-deficient B cells exhibited an increase of BCR-induced apoptosis and impaired proliferation in response to BCR ligation. Importantly, TAK1-deficient B cells failed to activate NF-κB after BCR stimulation. Thus, TAK1 is critical for B-cell maturation and BCR-induced NF-κB activation.


2010 ◽  
Vol 88 (5) ◽  
pp. 937-945 ◽  
Author(s):  
Andre Ortlieb Guerreiro-Cacais ◽  
Jelena Levitskaya ◽  
Victor Levitsky

Sign in / Sign up

Export Citation Format

Share Document