Rapid evolution and gene communication of H3N2 and H1N1 influenza a viruses

2019 ◽  
Vol 78 (6) ◽  
pp. 491-503 ◽  
Author(s):  
Xiao Li ◽  
jianglin Chen ◽  
Jingkai Hu ◽  
Xuanjiang Jin ◽  
Shumin Xie ◽  
...  
2017 ◽  
Author(s):  
Thorsten R. Klingen ◽  
Susanne Reimering ◽  
Jens Loers ◽  
Kyra Mooren ◽  
Frank Klawonn ◽  
...  

AbstractMonitoring changes in influenza A virus genomes is crucial to understand its rapid evolution and adaptation to changing conditions e.g. establishment within novel host species. Selective sweeps represent a rapid mode of adaptation and are typically observed in human influenza A viruses. We describe Sweep Dynamics (SD) plots, a computational method combining phylogenetic algorithms with statistical techniques to characterize the molecular adaptation of rapidly evolving viruses from longitudinal sequence data. To our knowledge, it is the first method that identifies selective sweeps, the time periods in which these occurred and associated changes providing a selective advantage to the virus. We studied the past genome-wide adaptation of the 2009 pandemic H1N1 influenza A (pH1N1) and seasonal H3N2 influenza A (sH3N2) viruses. The pH1N1 influenza virus showed simultaneous amino acid changes in various proteins, particularly in seasons of high pH1N1 activity. Partially, these changes resulted in functional alterations facilitating sustained human-to-human transmission. In the evolution of sH3N2 influenza viruses, we detected changes characterizing vaccine strains, which were occasionally revealed in selective sweeps one season prior to the WHO recommendation. Taken together, SD plots allow monitoring and characterizing the adaptive evolution of influenza A viruses by identifying selective sweeps and their associated signatures.


Pneumologie ◽  
2014 ◽  
Vol 68 (02) ◽  
Author(s):  
C Tarnow ◽  
G Engels ◽  
A Arendt ◽  
F Schwalm ◽  
H Sediri ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0138704 ◽  
Author(s):  
Venkatramana D. Krishna ◽  
Erin Roach ◽  
Nathan A. Zaidman ◽  
Angela Panoskaltsis-Mortari ◽  
Jessica H. Rotschafer ◽  
...  

2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Amélie Chastagner ◽  
Séverine Hervé ◽  
Emilie Bonin ◽  
Stéphane Quéguiner ◽  
Edouard Hirchaud ◽  
...  

ABSTRACT The H1N1 influenza virus responsible for the most recent pandemic in 2009 (H1N1pdm) has spread to swine populations worldwide while it replaced the previous seasonal H1N1 virus in humans. In France, surveillance of swine influenza A viruses in pig herds with respiratory outbreaks led to the detection of 44 H1N1pdm strains between 2009 and 2017, regardless of the season, and findings were not correlated with pig density. From these isolates, 17 whole-genome sequences were obtained, as were 6 additional hemagglutinin (HA)/neuraminidase (NA) sequences, in order to perform spatial and temporal analyses of genetic diversity and to compare evolutionary patterns of H1N1pdm in pigs to patterns for human strains. Following mutation accumulation and fixation over time, phylogenetic analyses revealed for the first time the divergence of a swine-specific genogroup within the H1N1pdm lineage. The divergence is thought to have occurred around 2011, although this was demonstrated only through strains isolated in 2015 to 2016 in the southern half of France. To date, these H1N1pdm swine strains have not been related to any increased virulence in swine herds and have not exhibited any antigenic drift compared to seasonal human strains. However, further monitoring is encouraged, as diverging evolutionary patterns in these two species, i.e., swine and humans, may lead to the emergence of viruses with a potentially higher risk to both animal and human health.IMPORTANCE Pigs are a “mixing vessel” for influenza A viruses (IAVs) because of their ability to be infected by avian and human IAVs and their propensity to facilitate viral genomic reassortment events. Also, as IAVs may evolve differently in swine and humans, pigs can become a reservoir for old human strains against which the human population has become immunologically naive. Thus, viruses from the novel swine-specific H1N1pdm genogroup may continue to diverge from seasonal H1N1pdm strains and/or from other H1N1pdm viruses infecting pigs and lead to the emergence of viruses that would not be covered by human vaccines and/or swine vaccines based on antigens closely related to the original H1N1pdm virus. This discovery confirms the importance of encouraging swine IAV monitoring because H1N1pdm swine viruses could carry an increased risk to both human and swine health in the future as a whole H1N1pdm virus or gene provider in subsequent reassortant viruses.


2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Eugenio J. Abente ◽  
Daniela S. Rajao ◽  
Jefferson Santos ◽  
Bryan S. Kaplan ◽  
Tracy L. Nicholson ◽  
...  

ABSTRACTInfluenza A viruses in swine (IAV-S) circulating in the United States of America are phylogenetically and antigenically distinct. A human H3 hemagglutinin (HA) was introduced into the IAV-S gene pool in the late 1990s, sustained continued circulation, and evolved into five monophyletic genetic clades, H3 clades IV-A to -E, after 2009. Across these phylogenetic clades, distinct antigenic clusters were identified, with three clusters (cyan, red, and green antigenic cluster) among the most frequently detected antigenic phenotypes (Abente EJ, Santos J, Lewis NS, Gauger PC, Stratton J, et al. J Virol 90:8266–8280, 2016,https://doi.org/10.1128/JVI.01002-16). Although it was demonstrated that antigenic diversity of H3N2 IAV-S was associated with changes at a few amino acid positions in the head of the HA, the implications of this diversity for vaccine efficacy were not tested. Using antigenically representative H3N2 viruses, we compared whole inactivated virus (WIV) and live-attenuated influenza virus (LAIV) vaccines for protection against challenge with antigenically distinct H3N2 viruses in pigs. WIV provided partial protection against antigenically distinct viruses but did not prevent virus replication in the upper respiratory tract. In contrast, LAIV provided complete protection from disease and virus was not detected after challenge with antigenically distinct viruses.IMPORTANCEDue to the rapid evolution of the influenza A virus, vaccines require continuous strain updates. Additionally, the platform used to deliver the vaccine can have an impact on the breadth of protection. Currently, there are various vaccine platforms available to prevent influenza A virus infection in swine, and we experimentally tested two: adjuvanted-whole inactivated virus and live-attenuated virus. When challenged with an antigenically distinct virus, adjuvanted-whole inactivated virus provided partial protection, while live-attenuated virus provided effective protection. Additional strategies are required to broaden the protective properties of inactivated virus vaccines, given the dynamic antigenic landscape of cocirculating strains in North America, whereas live-attenuated vaccines may require less frequent strain updates, based on demonstrated cross-protection. Enhancing vaccine efficacy to control influenza infections in swine will help reduce the impact they have on swine production and reduce the risk of swine-to-human transmission.


2009 ◽  
Vol 54 (13) ◽  
pp. 2179-2192 ◽  
Author(s):  
Bin Wu ◽  
ChengMin Wang ◽  
GuoYing Dong ◽  
Jing Luo ◽  
BaoHua Zhao ◽  
...  

2018 ◽  
Vol 111 ◽  
pp. 443-449 ◽  
Author(s):  
Camilly P. Pires de Mello ◽  
George L. Drusano ◽  
Jonathan R. Adams ◽  
Matthew Shudt ◽  
Robert Kulawy ◽  
...  

2011 ◽  
Vol 85 (15) ◽  
pp. 7572-7581 ◽  
Author(s):  
J. H. Smith ◽  
T. Nagy ◽  
E. Driskell ◽  
P. Brooks ◽  
S. M. Tompkins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document