na sequences
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 36 (4) ◽  
pp. 512-520
Author(s):  
Jin Ling ◽  
Xiao-qin Li ◽  
Wen-zhi Yang ◽  
Jian-ling Jiao

AbstractIn this paper, we investigate the CUSUM statistic of change point under the negatively associated (NA) sequences. By establishing the consistency estimators for mean and covariance functions respectively, the limit distribution of the CUSUM statistic is proved to be a standard Brownian bridge, which extends the results obtained under the case of an independent normal sample and the moving average processes. Finally, the finite sample properties of the CUSUM statistic are given to show the efficiency of the method by simulation studies and an application on a real data analysis.


2021 ◽  
Author(s):  
Lei Li ◽  
Olivia Stovicek ◽  
Jenna J. Guthmiller ◽  
Siriruk Changrob ◽  
Yanbin Fu ◽  
...  

AbstractArtificial mutagenesis and chimeric/mosaic protein engineering have laid the foundation for antigenic characterization1 and universal vaccine design2–4 for influenza viruses. However, many methods used for influenza research and vaccine development require sequence editing and protein expression, limiting their applicability and the progress of related research to specialists. Rapid tools allowing even novice influenza researchers to properly analyze and visualize influenza protein sequences with accurate nomenclature are needed to expand the research field. To address this need, we developed Librator, a system for analyzing and designing protein sequences of influenza virus Hemagglutinin (HA) and Neuraminidase (NA). With Librator’s graphical user interface (GUI) and built-in sequence editing functions, biologists can easily analyze influenza sequences and phylogenies, automatically port sequences to visualize structures, then readily mutate target residues and design sequences for antigen probes and chimeric/mosaic proteins efficiently and accurately. This system provides optimized fragment design for Gibson Assembly5 of HA and NA expression constructs based on peptide conservation of all historical HA and NA sequences, ensuring fragments are reusable and compatible, allowing for significant reagent savings. Use of Librator will significantly facilitate influenza research and vaccine antigen design.


2019 ◽  
Vol 147 ◽  
Author(s):  
N. S. Korsun ◽  
S. G. Angelova ◽  
I. T. Trifonova ◽  
I. L. Georgieva ◽  
I. S. Tzotcheva ◽  
...  

AbstractIn this study, we investigated the antigenic and genetic characteristics of influenza viruses circulating in Bulgaria during the 2017/2018 season. The detection and typing/subtyping of influenza viruses were performed using real-time RT-PCR. Results of antigenic characterisation, phylogenetic and amino acid sequence analyses of representative influenza strains are presented. The season was characterised by the predominance of B/Yamagata viruses, accounting for 77% of detected influenza viruses, followed by A(H1N1)pdm09 (17%), B/Victoria (3.7%) and A(H3N2) (2.4%). The sequenced B/Yamagata, B/Victoria, A(H1N1)pdm09 and A(H3N2) viruses belonged to the genetic groups 3, 1A, 6B.1 and 3C.2a1, respectively. Amino acid analysis of B/Yamagata isolates revealed the presence of three changes in haemagglutinin (HA), eight changes in neuraminidase (NA) and a number of substitutions in internal proteins compared with the B/Phucket/3073/2013 vaccine virus. Despite the amino acid changes, B/Yamagata viruses remained antigenically related to the vaccine strain. B/Victoria isolates fell into a group of viruses with double deletion (Δ162–163) in HA1. Substitutions in HA and NA sequences of B/Victoria, A(H1N1)pdm09 and A(H3N2) viruses were also identified compared with the vaccine strains, including in antigenic sites. The results of this study confirm the genetic variability of circulating influenza viruses and the need for continual antigenic and molecular surveillance.


2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Amélie Chastagner ◽  
Séverine Hervé ◽  
Emilie Bonin ◽  
Stéphane Quéguiner ◽  
Edouard Hirchaud ◽  
...  

ABSTRACT The H1N1 influenza virus responsible for the most recent pandemic in 2009 (H1N1pdm) has spread to swine populations worldwide while it replaced the previous seasonal H1N1 virus in humans. In France, surveillance of swine influenza A viruses in pig herds with respiratory outbreaks led to the detection of 44 H1N1pdm strains between 2009 and 2017, regardless of the season, and findings were not correlated with pig density. From these isolates, 17 whole-genome sequences were obtained, as were 6 additional hemagglutinin (HA)/neuraminidase (NA) sequences, in order to perform spatial and temporal analyses of genetic diversity and to compare evolutionary patterns of H1N1pdm in pigs to patterns for human strains. Following mutation accumulation and fixation over time, phylogenetic analyses revealed for the first time the divergence of a swine-specific genogroup within the H1N1pdm lineage. The divergence is thought to have occurred around 2011, although this was demonstrated only through strains isolated in 2015 to 2016 in the southern half of France. To date, these H1N1pdm swine strains have not been related to any increased virulence in swine herds and have not exhibited any antigenic drift compared to seasonal human strains. However, further monitoring is encouraged, as diverging evolutionary patterns in these two species, i.e., swine and humans, may lead to the emergence of viruses with a potentially higher risk to both animal and human health.IMPORTANCE Pigs are a “mixing vessel” for influenza A viruses (IAVs) because of their ability to be infected by avian and human IAVs and their propensity to facilitate viral genomic reassortment events. Also, as IAVs may evolve differently in swine and humans, pigs can become a reservoir for old human strains against which the human population has become immunologically naive. Thus, viruses from the novel swine-specific H1N1pdm genogroup may continue to diverge from seasonal H1N1pdm strains and/or from other H1N1pdm viruses infecting pigs and lead to the emergence of viruses that would not be covered by human vaccines and/or swine vaccines based on antigens closely related to the original H1N1pdm virus. This discovery confirms the importance of encouraging swine IAV monitoring because H1N1pdm swine viruses could carry an increased risk to both human and swine health in the future as a whole H1N1pdm virus or gene provider in subsequent reassortant viruses.


2014 ◽  
Vol 287 (17-18) ◽  
pp. 2138-2149
Author(s):  
Xiao-Yong Xiao ◽  
Hong-Wei Yin ◽  
Cha-Hua Ye

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Youhua Chen

Synonymous codon usage patterns of neuraminidase (NA) gene of 64 subtypes (one is a mixed subtype) of influenza A virus found in Canada were analyzed. In total, 1422 NA sequences were analyzed. Among the subtypes, H1N1 is the prevailing one with 516 NCBI accession records, followed by H3N2, H3N8, and H4N6. The year of 2009 has the highest report records for the NA sequences in Canada, corresponding to the 2009 pandemic event. Correspondence analysis on the RSCU values of the four major subtypes showed that they had distinct clustering patterns in the two-dimensional scatter plot, indicating that different subtypes of IAV utilized different preferential codons. This subtype clustering pattern implied the important influence of natural selection, which could be further evidenced by an extremely flattened regression line in the neutrality plot (GC12 versus G3s plot) and a significant phylogenetic signal on the distribution of different subtypes in the clades of the phylogenetic tree (λ statistic). In conclusion, different subtypes of IAV showed an evolutionary differentiation on choosing different optimal codons. Natural selection played a deterministic role to structure IAV codon usage patterns in Canada.


Filomat ◽  
2014 ◽  
Vol 28 (7) ◽  
pp. 1333-1343 ◽  
Author(s):  
Wenzhi Yang ◽  
Tingting Liu ◽  
Xuejun Wang ◽  
Shuhe Hu

It can be found that widely orthant dependent (WOD) random variables are weaker than extended negatively orthant dependent (END) random variables, while END random variables are weaker than negatively orthant dependent (NOD) and negatively associated (NA) random variables. In this paper, we investigate the Bahadur representation of sample quantiles based on WOD sequences. Our results extend the corresponding ones of Ling [N.X. Ling, The Bahadur representation for sample quantiles under negatively associated sequence, Statistics and Probability Letters 78(16) (2008), 2660-2663], Xu et al. [S.F. Xu, L. Ge, Y. Miao, On the Bahadur representation of sample quantiles and order statistics for NA sequences, Journal of the Korean Statistical Society 42(1) (2013), 1-7] and Li et al. [X.Q. Li, W.Z. Yang, S.H. Hu, X.J. Wang, The Bahadur representation for sample quantile under NOD sequence, Journal of Nonparametric Statistics 23(1) (2011), 59-65] for the case of NA sequences or NOD sequences.


2013 ◽  
Vol 7 (03) ◽  
pp. 235-242 ◽  
Author(s):  
Le Van An ◽  
Le Thi Bao Chi ◽  
Nguyen Hoang Bach ◽  
Huynh Thi Hai Duong ◽  
Massimo Deligios ◽  
...  

Introduction: The influenza A(H1N1)pdm09 virus arrived in Vietnam in May 2009 via the United States and rapidly spread throughout the country. This study provides data on the viral diagnosis and molecular epidemiology of influenza A(H1N1)pdm09 virus isolated in Thua Thien Hue Province, central Vietnam. Methodology: Nasopharyngeal swabs and throat swabs from 53 clinically infected patients in the peak of the outbreak were processed for viral diagnosis by culture and RT-PCR. Sequencing of entire HA and NA genes of representative isolates and molecular epidemiological analysis were performed. Results: A total of 32 patients were positive for influenza A virus by virus culture and/or RT-PCR; of these 22 were positive both by viral isolation and RT-PCR, 2 only by virus culture and 8 only by RT-PCR. The novel subtype of influenza A(H1N1)pdm09 was present in 93.4% of the isolates. Phylogenetic analysis of the HA and NA gene sequences showed identities higher than 99.50% in both genes. They were also similar to reference isolates in HA sequences (> 99% identity) and in NA sequences (>98.50% identity). Amino acid sequences predicted for the HA gene were highly identical to reference strains. The NA amino acid substitutions identified did not include the oseltamivir-resistant H275Y substitution. Conclusion: viral isolation and RT-PCR together were useful for diagnosis of the influenza A(H1N1)pdm09 virus. Variations in HA and NA sequences are similar to those identified in worldwide reference isolates and no drug resistance was found.


Sign in / Sign up

Export Citation Format

Share Document