The effect of Habrobracon hebetor venom on the activity of the prophenoloxidase system, the generation of reactive oxygen species and encapsulation in the haemolymph of Galleria mellonella larvae

2011 ◽  
Vol 57 (6) ◽  
pp. 796-800 ◽  
Author(s):  
N.A. Kryukova ◽  
I.M. Dubovskiy ◽  
E.A. Chertkova ◽  
Ya. L. Vorontsova ◽  
I.A. Slepneva ◽  
...  
Microbiology ◽  
2011 ◽  
Vol 157 (4) ◽  
pp. 1115-1122 ◽  
Author(s):  
Olivia L. Champion ◽  
Andrey Karlyshev ◽  
Ian A. M. Cooper ◽  
Donna C. Ford ◽  
Brendan W. Wren ◽  
...  

Manganese has an important yet undefined role in the virulence of many bacterial pathogens. In this study we confirm that a null mutation in Yersinia pseudotuberculosis mntH reduces intracellular manganese accumulation. An mntH mutant was susceptible to killing by reactive oxygen species when grown under manganese-limited conditions. The mntH mutant was defective in survival and growth in macrophages expressing functional Nramp1, but in macrophages deficient in Nramp the bacteria were able to survive and replicate. In Galleria mellonella, the mntH mutant was attenuated. Taken together, these data suggest a role for manganese in Y. pseudotuberculosis during macrophage intracellular survival, protecting the bacteria from the antimicrobial products released during the respiratory burst.


Author(s):  
Hanna D. Bismuth ◽  
Gaël Brasseur ◽  
Benjamin Ezraty ◽  
Laurent Aussel

Over the last decade, an increasing number of reports presented Galleria mellonella larvae as an important model to study host-pathogen interactions. Coherently, increasing information became available about molecular mechanisms used by this host to cope with microbial infections but few of them dealt with oxidative stress. In this work, we addressed the role of reactive oxygen species (ROS) produced by the immune system of G. mellonella to resist against Salmonella enterica, an intracellular pathogen responsible for a wide range of infections. We confirmed that Salmonella was pathogen for G. mellonella and showed that it had to reach a minimal bacterial load within the hemolymph to kill the larvae. ROS production by G. mellonella was revealed by the virulence defects of Salmonella mutants lacking catalases/peroxiredoxins or cytoplasmic superoxide dismutases, both strains being highly sensitive to these oxidants. Finally, we used bacterial transcriptional fusions to demonstrate that hydrogen peroxide (H2O2) was produced in the hemolymph of Galleria during infection and sensed by S. enterica. In line with this observation, the H2O2-dependent regulator OxyR was found to be required for bacterial virulence in the larvae. These results led us to conclude that ROS production is an important mechanism used by G. mellonella to counteract bacterial infections and validate this host as a relevant model to study host-pathogen interactions.


2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document