In vivo passages of heterologous Beauveria bassiana isolates improve conidial surface properties and pathogenicity to Nilaparvata lugens (Homoptera: Delphacidae)

2011 ◽  
Vol 106 (2) ◽  
pp. 211-216 ◽  
Author(s):  
Ting-Ting Song ◽  
Ming-Guang Feng
Author(s):  
Anders Palmquist ◽  
Omar M. Omar ◽  
Marco Esposito ◽  
Jukka Lausmaa ◽  
Peter Thomsen

Bone-anchored titanium implants have revolutionized oral healthcare. Surface properties of oral titanium implants play decisive roles for molecular interactions, cellular response and bone regeneration. Nevertheless, the role of specific surface properties, such as chemical and phase composition and nanoscale features, for the biological in vivo performance remains to be established. Partly, this is due to limited transfer of state-of-the-art preparation techniques to complex three-dimensional geometries, analytical tools and access to minute, intact interfacial layers. As judged by the available results of a few randomized clinical trials, there is no evidence that any particular type of oral implant has superior long-term success. Important insights into the recruitment of mesenchymal stem cells, cell–cell communication at the interface and high-resolution imaging of the interface between the surface oxide and the biological host are prerequisites for the understanding of the mechanisms of osseointegration. Strategies for development of the next generation of material surface modifications for compromised tissue are likely to include time and functionally programmed properties, pharmacological modulation and incorporation of cellular components.


Author(s):  
M. Estrada ◽  
Manuel Camacho ◽  
César Benito

AbstractInter-microsatellite PCR (ISSR-PCR) markers were used to identify and to examine the genetic diversity of eleven Beauveria bassiana isolates with different geographic origins. The variability and the phylogenetic relationships between the eleven strains were analyzed using 172 ISSR-PCR markers. A high level of polymorphism (near 80%) was found using these molecular markers. Seven different isolates showed exclusive bands, and ISSR primer 873 was able to distinguish between all the strains. The dendrogram obtained with these markers is robust and in agreement with the geographical origins of the strains. All the isolates from the Caribbean region were grouped together in a cluster, while the other isolates grouped in the other cluster. The similarity exhibited between the two clusters was less than 50%. This value of homology shows the high genetic variability detected between the isolates from the Caribbean region and the other isolates. ISSR-PCR markers provide a quick, reliable and highly informative system for DNA fingerprinting, and allowed the identification of the different B. bassiana isolates studied.


PEDIATRICS ◽  
1987 ◽  
Vol 79 (1) ◽  
pp. 38-46
Author(s):  
Machiko Ikegami ◽  
Yotaro Agata ◽  
Tarek Elkady ◽  
Mikko Hallman ◽  
David Berry ◽  
...  

Natural sheep surfactant, rabbit surfactant, human surfactant, and surfactant TA were compared for in vitro surface properties and for responses of preterm lambs to treatment. Equivalent amounts of sheep, rabbit, and human surfactants were needed to lower the surface tension to less than 10 dynes/cm, whereas four times less surfactant TA similarly lowered the surface tension. Surface-spreading rates were similar for the surfactants. The surface adsorption of the batch of human surfactant tested was much slower than was adsorption of the other surfactants. Ventilation was significantly improved in all surfactant-treated lambs relative to the control lambs, indicating the general efficacy of the surfactant treatments. Overall, surfactant TA had the best in vitro characteristics, yet the preterm lambs treated at birth with surfactant TA had lower Po2 values and higher ventilatory requirements than did the sheep surfactant-treated lambs. The in vivo responses to rabbit surfactant were intermediate between the responses to sheep surfactant and to surfactant TA. Human surfactant resulted in the least effective clinical response. More of the phosphatidylcholine associated with human surfactant and surfactant TA was lost from the alveoli and lung tissue after four hours of ventilation than was lost from sheep or rabbit surfactant-treated lambs. More intravascular radiolabeled albumin leaked into the alveoli of the surfactant TA-treated lambs than sheep or rabbit surfactant-treated. lambs. The four surfactants also had different sensitivities to the effects on minimum surface tensions of the soluble proteins present in alveolar washes. The study demonstrates that the range of clinical responses was not predictable based on the in vitro surface properties that we measured. The surfactants behaved differently with respect to loss from the lungs and sensitivity to soluble proteins. Factors other than surface properties are important for the in vivo responses to surfactant treatments.


2020 ◽  
Vol 11 (3) ◽  
pp. 47
Author(s):  
Floris Honig ◽  
Steven Vermeulen ◽  
Amir A. Zadpoor ◽  
Jan de Boer ◽  
Lidy E. Fratila-Apachitei

The ability to control the interactions between functional biomaterials and biological systems is of great importance for tissue engineering and regenerative medicine. However, the underlying mechanisms defining the interplay between biomaterial properties and the human body are complex. Therefore, a key challenge is to design biomaterials that mimic the in vivo microenvironment. Over millions of years, nature has produced a wide variety of biological materials optimised for distinct functions, ranging from the extracellular matrix (ECM) for structural and biochemical support of cells to the holy lotus with special wettability for self-cleaning effects. Many of these systems found in biology possess unique surface properties recognised to regulate cell behaviour. Integration of such natural surface properties in biomaterials can bring about novel cell responses in vitro and provide greater insights into the processes occurring at the cell-biomaterial interface. Using natural surfaces as templates for bioinspired design can stimulate progress in the field of regenerative medicine, tissue engineering and biomaterials science. This literature review aims to combine the state-of-the-art knowledge in natural and nature-inspired surfaces, with an emphasis on material properties known to affect cell behaviour.


2019 ◽  
Vol 167 ◽  
pp. 107243
Author(s):  
Tinatin Doolotkeldieva ◽  
Saikal Bobusheva ◽  
Aijamal Kulmanbetova ◽  
Sezim Zholdoshbekova ◽  
Aygerim Amanbek Kyzy

Sign in / Sign up

Export Citation Format

Share Document