scholarly journals Molecular docking study and anticonvulsant activity of synthesized 4-((4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)urea/thiourea derivatives

2018 ◽  
Vol 30 (3) ◽  
pp. 330-336 ◽  
Author(s):  
Alok Singh Thakur ◽  
Ravitas Deshmukh ◽  
Arvind Kumar Jha ◽  
P. Sudhir Kumar
2020 ◽  
Vol 17 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Nimisha jain ◽  
Pradeep Kumar Singour

Background: According to the World Health Organization, 50 million people worldwide are suffering from epilepsy, making it one of the most common neurological diseases globally. 2,3 disubstituted quinazolinone-4-one derivatives endowed with various pharmacological activity, particularly having anticonvulsant action. Objectives: The aim of this study was to synthesize 3-Substituted-2,3-Dihydro-2-thioxoquinazolin- 4-(1H)-one derivative and evaluate for anticonvulsant activity and neurotoxicity in order to find an efficient, compound with lesser side effects. Methods: A novel series of 3-[4-(2-amino-5, 6-dihydro-4(substituted phenyl)-4H-1, 3-oxazin /thiazin-6yl) phenyl]-2, 3-dihyro-2-thioxoquinazolin-4(1H)-one derivatives (4a-4p) were synthesized. The structures of the synthesized compounds were assigned on the basis of spectral data (UV, IR, 1HNMR, 13CNMR and MS) and performed anticonvulsant activity against maximal electroshock test and Subcutaneous Pentylenetetrazole model. Neurotoxicity was assessed using a rotarod apparatus test. The molecular docking study was performed to assess their binding affinities towards Gamma-Aminobutyric Acid type A receptor. A quantitative estimate of drug-likeness was also performed, which calculates the molecular properties and screen the molecules based on drug-likeness rules. Results: Compounds 4b, 4e, 4j and 4m have shown the highest anticonvulsant activity against tonic seizure with decreased mean duration of tonic hind leg extension of 8.31, 7.35, 8.61 and 8.99 s, respectively in maximal electroshock model and increased onset time clonic convulsion duration of 94.45, 96.65, 93.51 and 91.86 s in Subcutaneous Pentylenetetrazole model. Molecular docking study revealed a better binding affinity with Gamma-Aminobutyric Acid type A receptor. Conclusion: The compound 4b and 4e emerged out as the pilot molecule with a better anticonvulsant activity without any neurotoxicity. The obtained results showed that compounds 4b and 4e could be useful as a template for future design, optimization, and investigation to produce more active analogs.


2019 ◽  
Vol 28 (11) ◽  
pp. 1818-1827 ◽  
Author(s):  
Nermeen A. Eltahawy ◽  
Amany K. Ibrahim ◽  
Mohamed S. Gomaa ◽  
Sawsan A. Zaitone ◽  
Mohamed M. Radwan ◽  
...  

2015 ◽  
Author(s):  
Manik Ghosh ◽  
Kamal Kant ◽  
Anoop Kumar ◽  
Padma Behera ◽  
Naresh Rangra ◽  
...  

2020 ◽  
Author(s):  
Rafael Espiritu

<p>Cholesterol-dependent cytolysins (CDCs) are proteinaceous toxins secreted as monomers by some Gram-positive and Gram-negative bacteria that contribute to their pathogenicity. These toxins bind to either cholesterol or human CD59, leading to massive structural changes, toxin oligomerization, formation of very large pores, and ultimately cell death, making these proteins promising targets for inhibition. Myricetin, and its related flavonoids, have been previously identified as a candidate small molecule inhibitor of specific CDCs such as listeriolysin O (LLO) and suilysin (SLY), interfering with their oligomerization. In this work, molecular docking was performed to assess the interaction of myricetin with other CDCs whose crystal structures are already known. Results indicated that although myricetin bound to the hitherto identified cavity in domain 4 (D4), much more efficient and stable binding was obtained in sites along the interfacial regions of domains 1 – 3 (D1 – D3). This was common among the tested CDCs, which was primarily due to much more extensive stabilizing intermolecular interactions, as indicated by post-docking analysis. Specifically, myricetin bound to (1) the interface of the three domains in anthrolysin O (ALO), perfringolysin O (PFO), pneumolysin (PLY), SLY, and vaginolysin (VLY), (2) at/near the D1/D3 interface in LLO and streptolysin O (SLO), and (3) along the D2/D3 interface in intermedilysin (ILY). These findings provide theoretical basis on the possibility of using myricetin and its related compounds as a broad-spectrum inhibitor of CDCs to potentially address the diseases associated with these pathogens.</p>


Sign in / Sign up

Export Citation Format

Share Document