scholarly journals Investigation of mutual effects among additives in electrolyte for plasma electrolytic oxidation on magnesium alloys

2020 ◽  
Vol 8 (2) ◽  
pp. 523-536 ◽  
Author(s):  
Lingyun An ◽  
Ying Ma ◽  
Le Sun ◽  
Zhanying Wang ◽  
Sheng Wang
2018 ◽  
Vol 386 ◽  
pp. 321-325
Author(s):  
Igor M. Imshinetsky ◽  
Sergey V. Gnedenkov ◽  
Sergey L. Sinebryukhov ◽  
Dmitry V. Mashtalyar ◽  
Andrew V. Samokhin ◽  
...  

The way of protective coatings formation on MA8 magnesium alloy by plasma electrolytic oxidation (PEO) in the electrolyte containing composite zirconia-silica nanoparticles has been developed. It is shown that the coatings, which contain nanoparticles, have a significant advantage in comparison with the surface layers obtained without their use.


2019 ◽  
Vol 2 (13) ◽  
pp. 1-21 ◽  
Author(s):  
Jean-Pierre Caire ◽  
Francis Dalard ◽  
Wilfried Sathurnin Minko

2020 ◽  
Vol 8 (3) ◽  
pp. 587-600 ◽  
Author(s):  
A.G. Rakoch ◽  
E.P. Monakhova ◽  
Z.V. Khabibullina ◽  
M. Serdechnova ◽  
C. Blawert ◽  
...  

2015 ◽  
Vol 245 ◽  
pp. 97-102
Author(s):  
Dmitry V. Mashtalyar ◽  
Sergey V. Gnedenkov ◽  
Sergey L. Sinebryukhov ◽  
Igor M. Imshinetsky

Investigation results of the composite coatings obtained on MA8 magnesium alloy by plasma electrolytic oxidation (PEO) and post-treated by electrophoretic deposition of superdispersed polytetrafluoroethylene (SPTFE) are presented. Comprehensive research of electrochemical and mechanical properties of the obtained polymer-containing coatings on the magnesium alloy has been performed. It has been established that composite coatings to decrease the corrosion current density by three orders of magnitude (down to Ic = 2.0×10-10 A/cm2) and the wear by two orders of magnitude (down to 1.2×10-6 mm3/(N·m)), as compared to the basic PEO-coating.


2015 ◽  
Vol 364 ◽  
pp. 27-34
Author(s):  
Barbara Kazanski ◽  
Alex Lugovskoy ◽  
Ohad Gaon ◽  
Michael Zinigrad

Magnesium is one of the lightest metals and magnesium alloys have quite special properties, interest to which is continuously growing. In particular, their high strength-to-weight ratio makes magnesium alloys attractive for various applications, such as transportation, aerospace industryetc. However, magnesium alloys are still not as popular as aluminum alloys, and a major issue is their corrosion behavior.The present research investigated the influence of the PEO treatment on the corrosion behavior of MRI 230M magnesium alloy. Plasma electrolytic oxidation (PEO) of an MRI 230M alloy was accomplished in a silicate-base electrolyte with KF addition using an AC power source.The corrosion behavior of both treated and untreated samples was evaluated by open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS), linear polarization tests, linear sweep voltammetry (Tafel extrapolation) and chemical methods, such as mass loss and hydrogen evolution, in neutral 3.0 wt% NaCl solution.According to the tests results, PEO process can affect the corrosion resistance of MRI 230M magnesium alloy, though its action is not always unambiguous. An attempt to explain the influence of the PEO treatment on the corrosion behavior of the alloy is presented.


Sign in / Sign up

Export Citation Format

Share Document