scholarly journals Damping performance of SiC nanoparticles reinforced magnesium matrix composites processed by cyclic extrusion and compression

Author(s):  
Mahmoud Ebrahimi ◽  
Li Zhang ◽  
Qudong Wang ◽  
Hao Zhou ◽  
Wenzhen Li
Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 57 ◽  
Author(s):  
Kaibo Nie ◽  
Zhihao Zhu ◽  
Kunkun Deng ◽  
Ting Wang ◽  
Jungang Han

Magnesium matrix composites synergistically reinforced by SiC nanoparticles and second phases were prepared by 12 passes of multi-pass forging, varying the temperature. The effects of grain refinement and the precipitates on the hot deformation behavior were analyzed. Deformation zones which could be observed in the fine-grained nanocomposite before hot compression disappeared, and the trend of streamlined distribution for the precipitated phases was weakened. At the same compression rate, as the compression temperature increased, the number of precipitated phases decreased, and the grain size increased. For fine-grained nanocomposites, after the peak stress, there was no obvious dynamic softening stage on the stress–strain curve, and then the steady stage was quickly reached. The critical stress of the fine-grained nanocomposites was lower than that of the coarse-grained nanocomposites, which can be attributed to the large amounts of precipitates and significantly refined grains. The deformation mechanism of the coarse-grained nanocomposite was controlled by dislocation climb resulting from lattice diffusion, while the deformation mechanism for the fine-grained nanocomposite was dislocation climb resulting from grain boundary slip. The activation energy of the fine-grained nanocomposite was decreased, compared with the coarse-grained nanocomposite. The area of the workability region for the fine-grained nanocomposite was significantly larger than that of the coarse-grained nanocomposite, and there was no instability region at a low strain rate (0.001–0.01 s−1) under all deformation temperatures. The optimal workability region was 573 K /0.001–0.01 s−1 for the fine-grained nanocomposite, and the processing temperature was lower than the coarse-grained nanocomposite (623–673 K).


2009 ◽  
Vol 44 (11) ◽  
pp. 2759-2764 ◽  
Author(s):  
X. J. Wang ◽  
X. S. Hu ◽  
K. Wu ◽  
M. Y. Zheng ◽  
L. Zheng ◽  
...  

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1510-1515 ◽  
Author(s):  
YONG-HA PARK ◽  
YONG-HO PARK ◽  
IK-MIN PARK ◽  
KYUNG-MOX CHO ◽  
JEONG-JUNG OAK ◽  
...  

Aluminum borate whisker (9( Al 2 O 3)·( B 2 O 3)) reinforced AS52(with and without strontium modification) metal matrix composites (MMC) were fabricated by the squeeze infiltration method. Creep rupture test was carried out at 150°C and 100 MPa condition. Results showed that Alborex reinforcement and modified polygonal shape Mg 2 Si phase contributed to the enhancement of mechanical properties and creep resistance. Creep rupture time was increased 11% and minimum creep rate was decreased 17% in the composite. At the Alborex/matrix interface, uniform thin layer of MgO was formed. The initiation of micro-voids at the reinforcement/matrix or Mg 2 Si /matrix interface was followed by their growth and coalescence to macro-cracks.


Sign in / Sign up

Export Citation Format

Share Document