precipitated phases
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 33)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Chao Liu ◽  
Qinglin Li ◽  
Tianyi Zhang ◽  
Xiaoming Ding ◽  
Xiaorong Li ◽  
...  

Abstract The pitting corrosion behavior of ZL101A aluminum alloy in simulated marine environment was investigated for guiding the composition design. The Volta potential of the precipitated phases was mainly characterized via the in-situ SKPFM technique. The obtained results indicated that the precipitated phases of ZL101A were composed of Al-Si phase, Si-Mg-Fe phase and Si-rich/Al-poor phase, accelerating the formation of corrosion pits during immersion test. Both Al-Si phase and Si-Mg-Fe phase accelerated the corrosion process through the self-dissolution and the galvanic effect, respectively, which can be contributed to the high corrosion sensitivity of the two phases. Si-rich/Al-poor phase presented high corrosion resistance, which should be related to the deficiency of impure elements such as Mg and Fe.


2021 ◽  
Vol 8 ◽  
Author(s):  
Quantong Jiang ◽  
Dongzhu Lu ◽  
Chang Liu ◽  
Nazhen Liu ◽  
Baorong Hou

The Pilling-Bedworth ratio of oxides preferentially formed from the precipitated phases in magnesium alloys were calculated. The results showed that the PBR value of Nd2O3 preferentially formed from Mg12Nd was 1.0584, and the PBR value of Y2O3 preferentially formed from Mg24Y5 was 1.1923. Both the Nd2O3 and Y2O3 would provide a good protection to the Mg matrix. The Gd2O3 preferentially formed from Mg3Gd, whereas the MgO preferentially formed from MgNi2. The PBR value of these two oxides were both larger than 2. The corresponding oxides formed from the common precipitated phases Mg17Al12, MgZn2, MgCu2, Mg2Ca, Mg12Ce, and MgAg were all less than 1. The oxide films formed on surfaces of pure Mg and Mg-xY (x = 3, 5, 7 wt.%) alloys at high temperatures were analyzed. The results showed that the oxide films were composed of a Y2O3/MgO outer layer and an inner layer rich with Y2O3. The formation of Y2O3 was mainly caused by the oxidation of Mg24Y5. The more Y2O3 existed in the composite oxidation film, the better corrosion resistance of the Mg-Y samples.


Author(s):  
Yuehong Zheng ◽  
He Zhao ◽  
Sijia Zhu ◽  
Peiqing La ◽  
Faqi Zhan ◽  
...  

The metallic element Mo has almost no solid solubility in copper and can be used as a nucleation particle to refine the grain size and increase the recrystallization temperature of the alloy during solidification. It is expected to obtain copper alloys with good comprehensive properties by reasonably controlling the addition amount of Mo. However, it is difficult to prepare Cu–Mo alloys with uniform structure and there are few related literatures. In this paper, the aluminothermic reaction method, which has the advantages of simple process, low cost, and large size of the prepared alloy, was adopted, and a cluster model with the atomic ratio of Mo and Ni of 1:12 was introduced to design the alloy composition. Here, five alloys with different copper contents were prepared and followed by room temperature rolling with 40%, 60%, and 80% deformation. The results show that the as-cast Cu–Ni–Mo alloys exhibit good formability, have no macroscopic defects and present a small amount of precipitates. With the increase of alloy elements Ni and Mo, the hardness and strength of the alloys increase obviously, while the electrical conductivity decreases gradually. For the rolled alloys, a large number of lamellar deformed structures are formed, the grains are obviously refined, the precipitated phases are broken and the distribution is more uniform, thus the strength and hardness of the alloy increase significantly, the plasticity decrease significantly, while the conductivity changed little. In this study, high-strength samples were obtained, which may be a valuable exploration for the preparation of Cu–Ni–Mo alloy sheets with excellent microstructure and mechanical properties.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1080
Author(s):  
Jinjin Lv ◽  
Chao Zhang ◽  
Zhiyu Chen ◽  
Dan Bai ◽  
Yuwen Zhang ◽  
...  

Plasma cladding coupled induction heating was developed and successfully used to fabricate Ni60A coating on the surface of copper pipe. By matching the swing arc with the rotating copper pipe, the cladding efficiency was as high as 32.72 mm2/s. From the head to the tail of the coating, the wear resistance changed from 4.5 to 1.8 times that of pure copper. During the cladding process with constant current, the surface temperature of the cladding zone and the bath depth gradually increased. The corresponding dilution ratio increased, accompanied by the widening of the interface transition zone and the growth of precipitated phases (CrB and Cr23C6). Due to the gradient change of composition, the coating can be regarded as an in situ synthesized gradient coating. The critical point of sudden change of temperature in cladding zone was 850 °C, at which point the wear mechanism changed from abrasive wear to adhesive wear. The proper surface temperature of cladding zone should be controlled within 600–850 °C, which can be achieved by matching the cladding current and induction heating power. Results indicated that plasma cladding coupled induction heating is a potentially effective method to prepare high-quality coating on the surface of a large-complex-curved copper component.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5018
Author(s):  
Maohong Yang ◽  
Zheng Zhang ◽  
Linping Li

This paper studies the evolution of the microstructure and microhardness in the G115 side of the G115/Sanicro25 dissimilar steel welded joint during the creep process. The joints were subjected to creep tests at 675 °C, 140 MPa, 120 MPa and 100 MPa. A scanning electron microscope equipped with an electron backscattering diffraction camera was used to observe the microstructure of the cross-section. The fracture position of the joint and the relationship between the cavity and the second phase were analyzed. The microstructure morphology of the fracture, the base metal and the thread end was compared and the composition and size of the Laves phase were statistically analyzed. The results show that the fracture locations are all located in the fine-grain heat-affected zone (FGHAZ) zone, and the microstructure near the fracture is tempered martensite. There are two kinds of cavity in the fracture section. Small cavities sprout adjacent to the Laves phase; while large cavities occupy the entire prior austenite grain, there are more precipitated phases around the cavities. The Laves phase nucleates at the boundary of the M23C6 carbide and gradually grows up by merging the M23C6 carbide. Creep accelerates the coarsening rate of the Laves phase; aging increases the content of W element in the Laves phase.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4507
Author(s):  
Piotr Macioł ◽  
Jan Falkus ◽  
Paulina Indyka ◽  
Beata Dubiel

In our study, the comparison of the automatically detected precipitates in L-PBF Inconel 625, with experimentally detected phases and with the results of the thermodynamic modeling was used to test their compliance. The combination of the complementary electron microscopy techniques with the microanalysis of chemical composition allowed us to examine the structure and chemical composition of related features. The possibility of automatic detection and identification of precipitated phases based on the STEM-EDS data was presented and discussed. The automatic segmentation of images and identifying of distinguishing regions are based on the processing of STEM-EDS data as multispectral images. Image processing methods and statistical tools are applied to maximize an information gain from data with low signal-to-noise ratio, keeping human interactions on a minimal level. The proposed algorithm allowed for automatic detection of precipitates and identification of interesting regions in the Inconel 625, while significantly reducing the processing time with acceptable quality of results.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Jia Liu ◽  
Jituo Liu ◽  
Xianhui Wang ◽  
Chong Fu ◽  
Yanlong Wang ◽  
...  

In this paper we investigated the phase-transformation dynamics of the Cu-3Ti-3Ni-0.5Si alloy by applying the Avrami method to phase-transformation dynamics and electrical conductivity based on the relationship between the electrical conductivity and the volume fraction of precipitates in the Cu-3Ti-3Ni-0.5Si alloy. The results corroborated well with the experimental data. The microstructure and precipitated phases were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analysis of the selected-area electron-diffraction patterns indicated that the precipitates formed in the matrix of the Cu-3Ti-3Ni-0.5Si alloy during aging, correspond to the Ni3Ti, Ni3Si, and Ni2Si phases. According to the values of formation enthalpy and cohesive energy determined by first-principle calculations, the formation of the Ni2Si phase is more favorable compared to the Ni3Si and Ni3Ti phases, and the Ni3Ti exhibits improved structural stability compared to the Ni2Si and Ni3Si phases.


2021 ◽  
Vol 1036 ◽  
pp. 11-19
Author(s):  
Hong Xia Bi ◽  
Ming Hua Tang ◽  
Zhi Lan Ren ◽  
Yong Zhou

The effects of different tempering temperatures on the microstructure evolution and mechanical properties of the new low-alloy ultra-high-strength 45CrNiSiMnMoVA steel after quenching were investigated by mechanical property tests, SEM and TEM. The results show that a complex phase organization consisting of martensite/ lower bainite of the tested steel after treated at 920°C×1h+(320~380)°C×4h was obtained, and the partition interface of the lath martensite bundle became blurred from clear with the increase of tempering temperature; In the proposed tempering temperature range, the toughness of the alloy has become better while maintain the strength without decreasing basically, and when the tempering temperature is 350°C, the alloy has the optimal comprehensive mechanical properties of strength, plasticity and toughness together. The analysis concluded that the strong toughening of the tested steel was mainly attributed to the coupling effect of the alloying elements in the steel and the composite toughening of the nano-precipitated phases, among other aspects.


Sign in / Sign up

Export Citation Format

Share Document