Seasonal variation in benthic community oxygen demand: A response to an ice algal bloom in the Beaufort Sea, Canadian Arctic?

2007 ◽  
Vol 67 (1-2) ◽  
pp. 1-12 ◽  
Author(s):  
Paul E. Renaud ◽  
Andrea Riedel ◽  
Christine Michel ◽  
Nathalie Morata ◽  
Michel Gosselin ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Christina Bonsell ◽  
Kenneth H. Dunton

We examined the patterns of propagule recruitment to assess the timescale and trajectory of succession and the possible roles of physical factors in controlling benthic community structure in a shallow High Arctic kelp bed in the Beaufort Sea, Alaska. Spatial differences in established epilithic assemblages were evaluated against static habitat attributes (depth, distance from river inputs) and environmental factors (temperature, salinity, current speed, underwater light) collected continuously over 2–6 years. Our measurements revealed that bottom waters remained below freezing (mean winter temperatures ∼−1.8°C) and saline (33–36) with negligible light levels for 8–9 months. In contrast, the summer open water period was characterized by variable salinities (22–36), higher temperatures (up to 8–9°C) and measurable irradiance (1–8 mol photons m–2 day–1). An inshore, near-river site experienced strong, acute, springtime drops in salinity to nearly 0 in some years. The epilithic community was dominated by foliose red algae (47–79%), prostrate kelps (2–19%), and crustose coralline algae (0–19%). Strong spatial distinctions among sites included a positive correlation between cover by crustose coralline algae and distance to river inputs, but we found no significant relationships between multi-year means of physical factors and functional groups. Low rates of colonization and the very slow growth rates of recruits are the main factors that contribute to prolonged community development, which augments the influence of low-frequency physical events over local community structure. Mortality during early succession largely determines crustose coralline algal and invertebrate prevalence in the established community, while kelp seem to be recruitment-limited. On scales > 1 m, community structure varies with bathymetry and exposure to freshwater intrusion, which regulate frequency of primary and physiological disturbance. Colonization rates (means of 3.3–69.9 ind. 100 cm–1 year–1 site–1) were much lower than studies in other Arctic kelp habitats, and likely reflect the nature of a truly High Arctic environment. Our results suggest that community development in the nearshore Beaufort Sea occurs over decades, and is affected by combinations of recruitment limitation, primary disturbance, and abiotic stressors. While seasonality exerts strong influence on Arctic systems, static habitat characteristics largely determine benthic ecosystem structure by integrating seasonal and interannual variability over timescales longer than most ecological studies.


BioScience ◽  
2020 ◽  
Vol 70 (4) ◽  
pp. 315-329 ◽  
Author(s):  
Michael A Mallin ◽  
Lawrence B Cahoon

Abstract Phosphorus (P) enrichment to streams, lakes, and estuaries is increasing throughout the United States. P loading is typically viewed from a harmful algal bloom perspective; if added P causes excess growths of phytoplankton or macroalgae, it may become targeted for control. However, P loading also contributes to two other non–algae-based aquatic problems. Field and experimental evidence shows that P loading directly stimulates growth of aquatic bacteria, which can increase to concentrations that exert a significant biochemical oxygen demand on water bodies, contributing to hypoxia, a widespread impairment. Experimental evidence also demonstrates that fecal bacterial growth can be significantly stimulated by P loading, increasing health risks through exposure or the consumption of contaminated shellfish and causing economic losses from beach and shellfish area closures. Resource managers need to look beyond algal bloom stimulation and should consider the broader roles that excess P loading can have on ecosystem function and microbiological safety for humans.


2001 ◽  
Vol 55 (3) ◽  
pp. 371-379 ◽  
Author(s):  
Arthur S. Dyke ◽  
James M. Savelle

AbstractThe fossil remains of 43 bowhead whales were mapped on the raised beaches of western Wollaston Peninsula, Victoria Island, Canadian Arctic, near the historic summer range limit of the Bering Sea stock in the Beaufort Sea. The elevations and radiocarbon ages of the remains demonstrate that the bowhead ranged commonly into the region following the submergence of Bering Strait at ca. 10,000 14C yr B.P. until ca. 8500 14C yr B.P. During the same interval, bowheads ranged widely from the Beaufort Sea to Baffin Bay. Subsequently, no whales reached Wollaston Peninsula until ca. 1500 14C yr B.P. Late Holocene populations evidently were small, or occupations were brief, in comparison to those of the early Holocene. Although the late Holocene recurrence may relate to the expansion of pioneering Thule whalers eastward from Alaska, there are few Thule sites and limited evidence of Thule whaling in the area surveyed to support this suggestion.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Jacek Majorowicz ◽  
Kirk Osadetz ◽  
Jan Safanda

Gas hydrates (GHs) are a prominent subsurface feature on the Canadian Arctic continental margin. They occur both onshore and offshore, although they formed generally terrestrially, during the last glacial sea level low-stand, both in a region that was persistently glaciated (Queen Elizabeth Islands Group, Canadian Arctic Archipelago (QEIG)), and in a region that was not persistently glaciated (Mackenzie Delta-Beaufort Sea (MD-BS)). Parts of both regions were transgressed in the Holocene. We study the dynamic permafrost and GH history in both regions using a numerical model to illustrate how changes in setting and environment, especially periodic glacial ice cover, affected GH stability. MD-BS models represent the Mallik wellsite and these models successfully match current permafrost and GH bases observed in the well-studied Mallik wells. The MD-BS models show clearly that GHs have persisted through interglacial episodes. Lower surface temperatures in the more northerly QEIG result in an earlier appearance of GH stability that persists through glacial-interglacial intervals, although the base of GH base stability varies up to 0.2 km during the 100 ka cycles. Because of the persistent glacial ice cover QEIG models illustrate pressure effects attributed to regional ice sheet loading on the bases of both permafrost and GHs since 0.9 MYBP. QEIG model permafrost and GH depths are 572 m and 1072 m, respectively, which is like that observed commonly on well logs in the QEIG. In order to match the observed GH bases in the QEIG it is necessary to introduce ice buildup and thaw gradually during the glacials and interglacials. QEIG sea level rose 100–120 m about 10 ka ago following the most recent glaciation. Shorelines have risen subsequently due to isostatic glacial unloading. Detailed recent history modeling in QEIG coastal regions, where surface temperatures have changed from near zero in the offshore to −20°C in the onshore setting results in a model GH stability base, that is, <0.5 km. These coastal model results are significantly shallower than the inferred average GH base about 1 km in wells, Smith and Judge (1993). QEIG interisland channels are generally shallow and much of the previous shoreline inundated by the Holocene transgression was above the glacial sea level low-stand during the last ice age, resulting in a QEIG setting somewhat analogous to the relict terrestrial GH now transgressed by the shallow Beaufort Sea. It is also possible that the marine conditions were present at emergent shorelines for a shorter time or that the pretransgression subsurface temperatures persisted or were influenced by coastal settings, especially where lateral effects may not be well represented by 1D models.


Sign in / Sign up

Export Citation Format

Share Document