The critical conditions of brittle–ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding

2005 ◽  
Vol 168 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Mingjun Chen ◽  
Qingliang Zhao ◽  
Shen Dong ◽  
Dan Li
2006 ◽  
Vol 315-316 ◽  
pp. 725-730 ◽  
Author(s):  
Ming Jun Chen ◽  
Ying Chun Liang ◽  
Jing He Wang ◽  
Shen Dong

In order to machine high accuracy Potassium Dihydrogen Phosphate (KDP) crystal part, the indentation experiments are carried out with various loads and various orientation angles. The experimental results show that the critical condition of brittle-ductile transition of KDP has strong anisotropy. Therefore, the influence factors on the surface quality of crystal KDP was discussed, it is shown that influences of the tool's geometry parameter, feed rate and Nominal depth of cut etc on the surface quality of KDP are main. Afterwards the cutting experimental study on crystal KDP material is carried out. The experimental results show that the super-smooth surface quality only can be obtained while KDP is ultra-precision machined in ductile mode.


2011 ◽  
Vol 487 ◽  
pp. 303-307
Author(s):  
Jia Liang Guan ◽  
H.W. Lu ◽  
X.H. Xiao ◽  
Y.C. Wu ◽  
Z.D. Chen

A new way of precision machining was studied through the experiments of Electrolytic In-Process Dressing (ELID) precision grinding and ultra precision lapping and polishing for W-Mo metal alloy. First a 22nm(Ra) surface was obtained through the ELID grinding, last a 11nm(Ra) surface was obtained after the process of lapping and polishing with 0.1~0.3 N/cm2pressure, 60~100 r/min rotational speed and other optimized parameters. Meanwhile, the formation mechanism of ultra precision mirror surface of the alloy was also analyzed. The experiments prove surface quality of the work piece was guaranteed by ELID grinding, and which was also greatly affected by some parameters in lapping and polishing such as pressure, rotational speed.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1363
Author(s):  
Yanyan Yan ◽  
Zhaoqing Zhang ◽  
Junli Liu ◽  
Haozhe Yan ◽  
Xiaoxu Wang

A large number of studies have shown that the height of a residual material is the key factor affecting the surface quality of ultra-precision grinding. However, the grinding process contains several random factors, such as the randomness of grinding particle size and the random distribution of grinding particles, which cause the complexity of the material removal process. In this study, taking the Nano-ZrO2 as an example, the removal process of surface materials in ultra-precision grinding of hard and brittle materials was analyzed by probability. A new calculation method for the height of surface residual materials in ultra-precision grinding of Nano-ZrO2 was proposed, and the prediction model of the three-dimensional roughness Sa and Sq were established by using this calculation method. The simulation and experimental results show that this calculation method can obtain the more accurate surface residual material height value which accords with the characteristics of three-dimensional roughness sampling, which provides a theoretical reference for the analysis of the material removal process and the surface quality evaluation of ultra-precision grinding of hard and brittle materials.


2014 ◽  
Vol 599-601 ◽  
pp. 707-709
Author(s):  
Chao Qun Leng ◽  
Xian Jing Luo

In this paper, the machining surface quality was analyzed, and points out the factors influencing the surface quality of machining, and proposes the measures to improve the quality of machining surface, has certain guidance for engineering practice.


2010 ◽  
Vol 426-427 ◽  
pp. 589-592 ◽  
Author(s):  
Jun Li ◽  
Yong Wei Zhu ◽  
Dun Wen Zuo ◽  
Kui Lin ◽  
M. Li

Fixed abrasive lapping and polishing (FALP) is a new machining technology and was adopted to manufacture hard brittle materials and obtain the high productivity because of fixed abrasive. The preparation process of fixed abrasive pad (FAP) was described. FALP of K9 glass, mobile panel glass and Si were investigated with fixed 5-10 µm diamond abrasives. The effect on material removal rate (MRR) and surface quality of different materials was studied. The results show that in the same FALP process conditions, Si is the highest MRR and reaches 4428 nm/min, mobile panel glass is inferior to and K9 glass is the lowest. And surface quality of mobile panel glass that surface roughness Sa is 2.10 nm and little and less damages is the best, Si is followed and K9 glass is the worst. So FALP can obtain the higher MRR and reaches several micrometers per minute and the better quality that surface roughness Sa can reach nanometer level for different materials.


2001 ◽  
Vol 2001.3 (0) ◽  
pp. 281-282
Author(s):  
Hideo SHIBUTANI ◽  
Jyunichi IKENO ◽  
Naruto FUWA ◽  
Osamu HOEIUCHI ◽  
Hirofumi SUZUKI

Sign in / Sign up

Export Citation Format

Share Document