Effect of the annealing temperature on the mechanical properties, formability and corrosion resistance of hot-rolled duplex stainless steel

2009 ◽  
Vol 209 (4) ◽  
pp. 1770-1782 ◽  
Author(s):  
G. Fargas ◽  
M. Anglada ◽  
A. Mateo
Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 294
Author(s):  
Shuang Liu ◽  
Chaohua Yue ◽  
Xi Chen ◽  
Qiuhua Zhu ◽  
Yiyou Tu

The pitting corrosion resistance of S32750 super duplex stainless steel, annealing treated at temperatures of 950–1200 °C for 20–60 min, was investigated using potentiodynamic polarization tests. The results show that the volume fractions of ferrite in the S32750 duplex stainless steel increased from 48.9% to 68.4% as annealing temperatures increased from 950 to 1200 °C. The pitting potential of the sample increased first and then decreased from an annealing temperature of 950 to 1050 °C, and the highest pitting potential was observed after annealing at 1050 °C for 35 min. The pitting corrosion resistance of S32750 stainless steel is due to the combination of pitting resistance equivalent number (PREN) value, phase fraction and grain boundary area fraction, and the imbalance of corrosion potential.


2018 ◽  
Vol 941 ◽  
pp. 118-123
Author(s):  
Dagoberto Brandão Santos ◽  
Raphael França Assumpção ◽  
Daniela Barçante Perasoli ◽  
Dalila Chaves Sicupira

The UNS S32205 duplex stainless steel was warm rolled at 600°C with 60 and 80% of thickness reduction. The microstructure was characterized by optical, scanning and transmission electron microscopy, X-ray diffractometry and EBSD. The corrosion resistance was evaluated by electrochemical behavior in the chlorine ion environment using potentiodynamic polarization measurements. The tensile strength reached 1185 MPa and 1328 MPa, after warm rolling with 60 and 80%, respectively. In steel as-supplied, hot rolled and annealed, the tensile strength was 774 MPa. Ferrite microtexture presented the α-fiber and the rotated cube component, while the austenite enhanced the brass, copper, and cube components to a lesser extent. The substructure was characterized by intense formation of tangles and forests of dislocations and discrete subgrains in the ferritic phase and by planar gliding of dislocations and formation of dense dislocations walls in the austenite. Despite the existence of a certain similarity among the values of pitting potentials obtained for all samples, the number of pits observed was higher in the as-received sample, followed by the samples with 60 and 80% reduction. These results draw attention to innovative routes in the industrial production of duplex stainless steel of this class, even considering ductility lost. Keywords: Warm rolling; Mechanical strength; Texture; Substructure; Corrosion resistance


Alloy Digest ◽  
2018 ◽  
Vol 67 (12) ◽  

Abstract Sandvik APM 2327 is a powder metallurgical hot isostatic pressed product that is a super duplex stainless steel with improved mechanical properties, corrosion resistance, and superior corrosion fatigue performance over conventional duplex grades. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-1299. Producer or source: Sandvik Materials Technology.


RSC Advances ◽  
2016 ◽  
Vol 6 (114) ◽  
pp. 112738-112747 ◽  
Author(s):  
Jinlong Zhao ◽  
Chunguang Yang ◽  
Dawei Zhang ◽  
Ying Zhao ◽  
M. Saleem Khan ◽  
...  

Solution treated 2205-Cu DSS with strong antibacterial performance against M. salsuginis showed appropriate mechanical properties and corrosion resistance.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1012 ◽  
Author(s):  
Feng Shang ◽  
Xiaoqiu Chen ◽  
Zhiyong Wang ◽  
Zuchun Ji ◽  
Fei Ming ◽  
...  

UNS S32707 hyper-duplex stainless steel (HDSS) parts with complex shapes for ocean engineering were prepared by selective laser melting (SLM) process. In the process of SLM, the balance between austenite and ferrite was undermined due to the high melting temperature and rapid cooling rate, resulting in poor ductility and toughness. The solution annealing was carried out with various temperatures (1050–1200 °C) for one hour at a time. The evolution of microstructures, mechanical properties, and corrosion resistance of UNS S32707 samples prepared by SLM was comprehensively investigated. The results indicate that a decrease in nitrogen content during the SLM process reduced the content of austenite, and a nearly balanced microstructure was obtained after appropriate solution annealing. The ratio between ferrite and austenite was approximately 59.5:40.5. The samples with solution treated at 1150 °C and 1100 °C exhibited better comprehensive mechanical properties and pitting resistance, respectively.


Sign in / Sign up

Export Citation Format

Share Document