Determination of a contact length dependent friction function in micro metal forming

2020 ◽  
Vol 286 ◽  
pp. 116831
Author(s):  
L. Rathmann ◽  
F. Vollertsen
2016 ◽  
Vol 716 ◽  
pp. 114-120 ◽  
Author(s):  
Sebastian Mróz ◽  
Piotr Szota ◽  
Teresa Bajor ◽  
Andrzej Stefanik

The paper presents the results of physical modelling of the plastic deformation of the Mg/Al bimetallic specimens using the Gleeble 3800 simulator. The plastic deformation of Mg/Al bimetal specimens characterized by the diameter to thickness ratio equal to 1 was tested in compression tests. The aim of this work was determination of the range of parameters as temperature and strain rate that mainly influence on the plastic deformation of Mg/Al bars during metal forming processes. The tests were carried out for temperature range from 300 to 400°C for different strain rate values. The stock was round 22.5 mm-diameter with an Al layer share of 28% Mg/Al bars that had been produced using the explosive welding method. Based on the analysis of the obtained testing results it has been found that one of the main process parameters influencing the plastic deformation the bimetal components is the initial stock temperature and strain rate values.


2012 ◽  
Vol 504-506 ◽  
pp. 863-868 ◽  
Author(s):  
Miklos Tisza ◽  
Péter Zoltán Kovács ◽  
Zsolt Lukács

Development of new technologies and processes for small batch and prototype production of sheet metal components has a very important role in the recent years. The reason is the quick and efficient response to the market demands. For this reasons new manufacturing concepts have to be developed in order to enable a fast and reliable production of complex components and parts without investing in special forming machines. The need for flexible forming processes has been accelerated during the last 15 years, and by these developments the technology reaches new extensions. Incremental sheet metal forming (ISMF) may be regarded as one of the promising developments for these purposes. A comprehensive research work is in progress at the University of Miskolc (Hungary) to study the effect of important process parameters with particular emphasis on the shape and dimensional accuracy of the products and particularly on the formability limitations of the process. In this paper, some results concerning the determination of forming limit diagrams for single point incremental sheet metal forming will be described.


2018 ◽  
Vol 19 (6) ◽  
pp. 756-760
Author(s):  
Tomasz Trzepieciński ◽  
Irena Nowotyńska

The friction phenomenon existed in almost all plastic working processes, in particular sheet metal forming, is a complex function of the material's properties, parameters of the forming process, surface topography of the sheet and tools, and lubrication conditions. During the stamping of the drawpieces there are zones differentiated in terms of stress and strain state, displacement speed and friction conditions. This article describes the methods for determining the value of the coefficient of friction in selected areas of sheet metal and presents the drawbacks and limitations of these methods.


2013 ◽  
Vol 842 ◽  
pp. 494-499 ◽  
Author(s):  
Evgenii V. Murashkin ◽  
Marina V. Polonik

We propose a mathematical model of large elastocreep deformations. As part of the constructed mathematical model the problem of deformation of the material in the vicinity of microdefect was solved. Integro-differential dependence of external pressure from irreversible deformations and displacements was obtained. The laws of loading material from vector displacements were calculated. We have shown that the monotonous laws of deformation can lead to non-monotonous stress changes.


CIRP Annals ◽  
2018 ◽  
Vol 67 (1) ◽  
pp. 257-260 ◽  
Author(s):  
Z.G. Wang ◽  
W.Z. Dong ◽  
K. Osakada
Keyword(s):  

Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 47 ◽  
Author(s):  
Tomasz Trzepiecinski ◽  
Hirpa G. Lemu

Friction is the main phenomenon that has a huge influence on the flow behavior of deformed material in sheet metal forming operations. Sheet metal forming methods are one of the most popular processes of obtaining finished products, especially in aerospace, automobile, and defense industries. Methods of sheet forming are carried out at different temperatures. So, it requires tribological tests that suitably represent the contact phenomena related to the temperature. The knowledge of the friction properties of the sheet is required for the proper design of the conditions of manufacturing processes and tools. This paper summarizes the methods used to describe friction conditions in conventional sheet metal forming and incremental sheet forming that have been developed over a period of time. The following databases have been searched: WebofKowledge, Scopus, Baztool, Bielefield Academic Search Engine, DOAJ Directory of Open Access Journals, eLibrary.ru, FreeFullPdf, GoogleScholar, INGENTA, Polish Scientific Journals Database, ScienceDirect, Springer, WorldCat, WorldWideScience. The English language is selected as the main source of review. However, in a limited scope, databases in Polish and Russian languages are also used. Many methods of friction testing for tribological studies are selected and presented. Some of the methods are observed to have a huge potential in characterizing frictional resistance. The application of these methods and main results have also been provided. Parameters affecting the frictional phenomena and the role of friction have also been explained. The main disadvantages and limitations of the methods of modeling the friction phenomena in specific areas of material to be formed have been discussed. The main findings are as follows—The tribological tests can be classified into direct and indirect measurement tests of the coefficient of friction (COF). In indirect methods of determination, the COF is determined based on measuring other physical quantities. The disadvantage of this type of methods is that they allow the determination of the average COF values, but they do not allow measuring and determining the real friction resistance. In metal forming operations, there exist high local pressures that intensify the effects of adhesion and plowing in the friction resistance. In such conditions, due to the plastic deformation of the material tested, the usage of the formula for the determination of the COF based on the Coulomb friction model is limited. The applicability of the Coulomb friction model to determine the COF is also very limited in the description of contact phenomena in hot SMF due to the high shear of adhesion in total contact resistance.


2015 ◽  
Vol 132 ◽  
pp. 342-349 ◽  
Author(s):  
M.B. Silva ◽  
A.J. Martínez-Donaire ◽  
G. Centeno ◽  
D. Morales-Palma ◽  
C. Vallellano ◽  
...  

2019 ◽  
Vol 28 (6) ◽  
pp. 77-83
Author(s):  
Jorge Carlos León Anaya ◽  
José Antonio Juanico Loran ◽  
Juan Carlos Cisneros Ortega

Numerical analysis for Tube Hydroforming (THF) was developed in this work to predict the behavior of extruded aluminum tube in a forming die for beverage can applications. THF is a metal forming process dependent of three parameters: friction between the tube and the die, internal pressure, and material properties of the tube. Strain hardening is a governing phenomenon that occurs in the plastic deformation process of metals. Hollomon’s equation offers a mathematical description of the metal behavior in the plastic zone. For a proper simulation, experimental determination of the mechanical properties of aluminum 6061-T5 were conducted and test specimens where obtained directly from the aluminum tube. Experimental data were necessary because no sufficient data of the mechanical properties of the tube were available in the literature. Numerical simulations of THF were performed, and the results were compared with analytical results for validation purposes with less than 10% of error.


Sign in / Sign up

Export Citation Format

Share Document