scholarly journals Effect of processing parameters during the laser beam melting of Inconel 738: Comparison between simulated and experimental melt pool shape

2021 ◽  
Vol 289 ◽  
pp. 116897 ◽  
Author(s):  
D. Grange ◽  
A. Queva ◽  
G. Guillemot ◽  
M. Bellet ◽  
J.-D. Bartout ◽  
...  
Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 530
Author(s):  
Zachary A. Young ◽  
Meelap M. Coday ◽  
Qilin Guo ◽  
Minglei Qu ◽  
S. Mohammad H. Hojjatzadeh ◽  
...  

Selective laser melting (SLM) additive manufacturing (AM) exhibits uncertainties, where variations in build quality are present despite utilizing the same optimized processing parameters. In this work, we identify the sources of uncertainty in SLM process by in-situ characterization of SLM dynamics induced by small variations in processing parameters. We show that variations in the laser beam size, laser power, laser scan speed, and powder layer thickness result in significant variations in the depression zone, melt pool, and spatter behavior. On average, a small deviation of only ~5% from the optimized/reference laser processing parameter resulted in a ~10% or greater change in the depression zone and melt pool geometries. For spatter dynamics, small variation (10 μm, 11%) of the laser beam size could lead to over 40% change in the overall volume of the spatter generated. The responses of the SLM dynamics to small variations of processing parameters revealed in this work are useful for understanding the process uncertainties in the SLM process.


2017 ◽  
Vol 107 (11-12) ◽  
pp. 818-823
Author(s):  
N. Eschner ◽  
J. Lingenhöhl ◽  
S. Öppling ◽  
G. Prof. Lanza

Gegenwärtig ist bei der additiven Fertigung eine prozessbegleitende Überwachung des Bauteils auf das Schmelzbad und oberflächennahe Bereiche limitiert. Mithilfe akustischer Signale lassen sich typische Defekte, die im Rahmen des LBM (laser beam melting – Laserstrahlschmelzen)-Verfahrens auftreten, detektieren. Dies umfasst neben Porosität und Rissen auch Eigenspannungen. In diesem Fachbeitrag werden die Möglichkeit eines in den LBM-Prozess integrierten akustischen Prüfsystems sowie alternative Sensorkonzepte diskutiert und evaluiert.   Current process monitoring techniques for additive manufacturing are limited to the melt pool and near-surface areas. Typical defects that occur within the LBM-process, such as porosity and cracks, as well as residual stress, can be detected by using acoustic waves. In this article, the possibility of an integrated ultrasonic inspection system, as well as various sensor concepts are discussed and evaluated.


Procedia CIRP ◽  
2018 ◽  
Vol 74 ◽  
pp. 111-115 ◽  
Author(s):  
Tobias Kolb ◽  
Lars Müller ◽  
Jan Tremel ◽  
Michael Schmidt

Procedia CIRP ◽  
2020 ◽  
Vol 94 ◽  
pp. 200-204
Author(s):  
M.J. Matthews ◽  
T.T. Roehling ◽  
S.A. Khairallah ◽  
T.U. Tumkur ◽  
G. Guss ◽  
...  

Procedia CIRP ◽  
2018 ◽  
Vol 74 ◽  
pp. 116-121 ◽  
Author(s):  
Tobias Kolb ◽  
Philipp Gebhardt ◽  
Oliver Schmidt ◽  
Jan Tremel ◽  
Michael Schmidt

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Shu ◽  
Daniel Galles ◽  
Ottman A. Tertuliano ◽  
Brandon A. McWilliams ◽  
Nancy Yang ◽  
...  

AbstractThe study of microstructure evolution in additive manufacturing of metals would be aided by knowing the thermal history. Since temperature measurements beneath the surface are difficult, estimates are obtained from computational thermo-mechanical models calibrated against traces left in the sample revealed after etching, such as the trace of the melt pool boundary. Here we examine the question of how reliable thermal histories computed from a model that reproduces the melt pool trace are. To this end, we perform experiments in which one of two different laser beams moves with constant velocity and power over a substrate of 17-4PH SS or Ti-6Al-4V, with low enough power to avoid generating a keyhole. We find that thermal histories appear to be reliably computed provided that (a) the power density distribution of the laser beam over the substrate is well characterized, and (b) convective heat transport effects are accounted for. Poor control of the laser beam leads to potentially multiple three-dimensional melt pool shapes compatible with the melt pool trace, and therefore to multiple potential thermal histories. Ignoring convective effects leads to results that are inconsistent with experiments, even for the mild melt pools here.


Author(s):  
O Donţu ◽  
S Ganatsios ◽  
D Duminica

The paper presents some remarks about the way in which the thermal deformation in the solid active laser medium influences the radial distribution of the emitted laser beam intensity, implicitly the processing parameters.


2014 ◽  
Vol 907 ◽  
pp. 89-96
Author(s):  
Vitalij Wottschel ◽  
Frank Vollertsen

Modern lightweight structures containing hybrid materials allow an improvement of the weight-specific properties. However, to exploit the potential as far as possible novel joint concepts are necessary, enabling an economic structure manufacturing. The DFG-researcher group Schwarz-Silber (FOR 1224) at the University of Bremen aims to explore and develop interface structures for advanced FRP-Al compounds. Considering textile, welding and casting techniques novel joint concepts are under development, in five interdisciplinary projects. Within their work the researcher group focuses on three concepts realizing the transition structures: the usage of wires (titanium), foils (titanium) and fibres (glass fibre) as transition elements between CFRP and aluminium. Typical examples for such hybrid structures can be found in products from the aerospace industry (e.g. hull segments), the car industry (e.g. CFRP roof structures), but also in general mechanical engineering (e.g. rotor blade elements). In this paper, the joint configuration based on titanium wires and a laser beam conduction welding process will be presented. As beam source a lamp pumped Nd:YAG laser (HL4006D) was used. First specimens obtained will be discussed with respect to their properties. It will be shown that the novel approach is in principle suitable to produce load-bearing CFRP-aluminium structures. The wire concept represents a parallel arrangement of miniaturized loop connections. It is characterized by joining a CF-Ti-textile to an aluminium sheet. A carbon fibre loop is threaded through a titanium wire loop by textile technologies on one side. On the side opposite to the CF, the titanium wire loops of the CF-Ti-textile are joined to an aluminium component by welding or casting. A double-sided laser beam heat conduction welding process was applied, for both concepts. During processing, the laser beam was travels along the aluminium edge. The titanium-aluminium structure is welded in two steps. During the first step (i.e. the first weld pass) the aluminium and titanium are heated by the defocused laser beam simultaneously on both sides. An aluminium melt pool is formed, supported by the action of gravity and a certain amount of pre-heating of the titanium-wire or the titanium-foils by the laser beam and by heat conduction through the aluminium melt pool. In the second, immediately subsequent step (i.e. the second weld pass), due to a pre-heating of the materials by the first pass and an increased heat transfer between both materials, a complete wetting of the titanium structures in the joining zone is achieved.


Sign in / Sign up

Export Citation Format

Share Document