CFRP-Aluminium Structures Realized by Laser Beam Joining Process

2014 ◽  
Vol 907 ◽  
pp. 89-96
Author(s):  
Vitalij Wottschel ◽  
Frank Vollertsen

Modern lightweight structures containing hybrid materials allow an improvement of the weight-specific properties. However, to exploit the potential as far as possible novel joint concepts are necessary, enabling an economic structure manufacturing. The DFG-researcher group Schwarz-Silber (FOR 1224) at the University of Bremen aims to explore and develop interface structures for advanced FRP-Al compounds. Considering textile, welding and casting techniques novel joint concepts are under development, in five interdisciplinary projects. Within their work the researcher group focuses on three concepts realizing the transition structures: the usage of wires (titanium), foils (titanium) and fibres (glass fibre) as transition elements between CFRP and aluminium. Typical examples for such hybrid structures can be found in products from the aerospace industry (e.g. hull segments), the car industry (e.g. CFRP roof structures), but also in general mechanical engineering (e.g. rotor blade elements). In this paper, the joint configuration based on titanium wires and a laser beam conduction welding process will be presented. As beam source a lamp pumped Nd:YAG laser (HL4006D) was used. First specimens obtained will be discussed with respect to their properties. It will be shown that the novel approach is in principle suitable to produce load-bearing CFRP-aluminium structures. The wire concept represents a parallel arrangement of miniaturized loop connections. It is characterized by joining a CF-Ti-textile to an aluminium sheet. A carbon fibre loop is threaded through a titanium wire loop by textile technologies on one side. On the side opposite to the CF, the titanium wire loops of the CF-Ti-textile are joined to an aluminium component by welding or casting. A double-sided laser beam heat conduction welding process was applied, for both concepts. During processing, the laser beam was travels along the aluminium edge. The titanium-aluminium structure is welded in two steps. During the first step (i.e. the first weld pass) the aluminium and titanium are heated by the defocused laser beam simultaneously on both sides. An aluminium melt pool is formed, supported by the action of gravity and a certain amount of pre-heating of the titanium-wire or the titanium-foils by the laser beam and by heat conduction through the aluminium melt pool. In the second, immediately subsequent step (i.e. the second weld pass), due to a pre-heating of the materials by the first pass and an increased heat transfer between both materials, a complete wetting of the titanium structures in the joining zone is achieved.

Author(s):  
Iñigo Hernando ◽  
Jon Iñaki Arrizubieta ◽  
Aitzol Lamikiz ◽  
Eneko Ukar

A numerical model was developed for predicting the bead geometry and microstructure in Laser Beam Welding of 2 mm thickness Inconel 718 sheets. The experiments were carried out with a 1 kW maximum power fiber laser coupled with a galvanometric scanner. Wobble strategy was employed for sweeping 1 mm wide circular areas for creating the weld seams and a specific tooling was manufactured for supplying protective Argon gas during the welding process. The numerical model takes into account both the laser beam absorption and the melt-pool fluid movement along the bead section, resulting in a weld geometry that depends on the process input parameters, such as feed rate and laser power. The microstructure of the beads was also estimated based on the cooling rate of the material. Features as bead upper and bottom final shapes, weld penetration and dendritic arm spacing were numerically and experimentally analyzed and discussed. The results given by the numerical analysis agree with the tests, making the model a robust predictive tool.


Metals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 536 ◽  
Author(s):  
Iñigo Hernando ◽  
Jon Arrizubieta ◽  
Aitzol Lamikiz ◽  
Eneko Ukar

A numerical model was developed for predicting the bead geometry and microstructure in laser beam welding of 2 mm thickness Inconel 718 sheets. The experiments were carried out with a 1 kW maximum power fiber laser coupled with a galvanometric scanner. Wobble strategy was employed for sweeping 1 mm wide circular areas for creating the weld seams, and a specific tooling was manufactured for supplying protective argon gas during the welding process. The numerical model takes into account both the laser beam absorption and the melt-pool fluid movement along the bead section, resulting in a weld geometry that depends on the process input parameters, such as feed rate and laser power. The microstructure of the beads was also estimated based on the cooling rate of the material. Features such as bead upper and bottom final shapes, weld penetration, and dendritic arm spacing, were numerically and experimentally analyzed and discussed. The results given by the numerical analysis agree with the tests, making the model a robust predictive tool.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Shu ◽  
Daniel Galles ◽  
Ottman A. Tertuliano ◽  
Brandon A. McWilliams ◽  
Nancy Yang ◽  
...  

AbstractThe study of microstructure evolution in additive manufacturing of metals would be aided by knowing the thermal history. Since temperature measurements beneath the surface are difficult, estimates are obtained from computational thermo-mechanical models calibrated against traces left in the sample revealed after etching, such as the trace of the melt pool boundary. Here we examine the question of how reliable thermal histories computed from a model that reproduces the melt pool trace are. To this end, we perform experiments in which one of two different laser beams moves with constant velocity and power over a substrate of 17-4PH SS or Ti-6Al-4V, with low enough power to avoid generating a keyhole. We find that thermal histories appear to be reliably computed provided that (a) the power density distribution of the laser beam over the substrate is well characterized, and (b) convective heat transport effects are accounted for. Poor control of the laser beam leads to potentially multiple three-dimensional melt pool shapes compatible with the melt pool trace, and therefore to multiple potential thermal histories. Ignoring convective effects leads to results that are inconsistent with experiments, even for the mild melt pools here.


Author(s):  
Chao-Yaug Liao ◽  
Jean-Claude Léon ◽  
Cédric Masclet ◽  
Michel Bouriau ◽  
Patrice L. Baldeck ◽  
...  

Based on the two-photon polymerization technique, an analysis of product shapes is performed so that their digital manufacturing models can be efficiently processed for micromanufacture. To describe microstructures, this analysis shows that nonmanifold models are of interest. These models can be intuitively understood as combinations of wires, surfaces, and volumes. Minimum acceptable wall thickness, wire dimension, and laser density of energy are among the elements justifying this category of models. Taking into account this requirement, a model preparation and processing scheme is proposed that widens the laser beam trajectories with a concept of extended layer manufacturing technique. A tessellation process suited for non-manifold models has been developed for computer-aided design models imported from standard for the exchange of product files. After tessellation, several polyhedral subdomains form a nonmanifold polyhedron. To plan the trajectories of the laser beam, adaptive slicing and global 3D hatching processes as well as a “welding” process (for joining subdomains of different dimensionality) have been combined. Finally, two nonmanifold microstructures are fabricated according to the proposed model preparation and processing scheme.


2012 ◽  
Author(s):  
Teresa Sibillano ◽  
Antonio Ancona ◽  
Domenico Rizzi ◽  
Francesco Mezzapesa ◽  
Ali Riza Konuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document