Towards High-Performance Deep Learning Models in Tool Wear Classification with Generative Adversarial Networks

Author(s):  
Dirk Alexander Molitor ◽  
Christian Kubik ◽  
Marco Becker ◽  
Ruben Helmut Hetfleisch ◽  
Fan Lyu ◽  
...  
2020 ◽  
pp. 42-49
Author(s):  
admin admin ◽  
◽  
◽  
Monika Gupta

Internet of Things (IoT) based healthcare applications have grown exponentially over the past decade. With the increasing number of fatalities due to cardiovascular diseases (CVD), it is the need of the hour to detect any signs of cardiac abnormalities as early as possible. This calls for automation on the detection and classification of said cardiac abnormalities by physicians. The problem here is that, there is not enough data to train Deep Learning models to classify ECG signals accurately because of sensitive nature of data and the rarity of certain cases involved in CVDs. In this paper, we propose a framework which involves Generative Adversarial Networks (GAN) to create synthetic training data for the classes with less data points to improve the performance of Deep Learning models trained with the dataset. With data being input from sensors via cloud and this model to classify the ECG signals, we expect the framework to be functional, accurate and efficient.


Ergodesign ◽  
2020 ◽  
Vol 2020 (4) ◽  
pp. 167-176
Author(s):  
Yuriy Malakhov ◽  
Aleksandr Androsov ◽  
Andrey Averchenkov

The article discusses generative adversarial networks for obtaining high quality images. Models, architecture and comparison of network operation are presented. The features of building deep learning models in the process of performing the super-resolution task, as well as methods associated with improving performance, are considered.


2021 ◽  
Vol 13 (22) ◽  
pp. 4590
Author(s):  
Yunpeng Yue ◽  
Hai Liu ◽  
Xu Meng ◽  
Yinguang Li ◽  
Yanliang Du

Deep learning models have achieved success in image recognition and have shown great potential for interpretation of ground penetrating radar (GPR) data. However, training reliable deep learning models requires massive labeled data, which are usually not easy to obtain due to the high costs of data acquisition and field validation. This paper proposes an improved least square generative adversarial networks (LSGAN) model which employs the loss functions of LSGAN and convolutional neural networks (CNN) to generate GPR images. This model can generate high-precision GPR data to address the scarcity of labelled GPR data. We evaluate the proposed model using Frechet Inception Distance (FID) evaluation index and compare it with other existing GAN models and find it outperforms the other two models on a lower FID score. In addition, the adaptability of the LSGAN-generated images for GPR data augmentation is investigated by YOLOv4 model, which is employed to detect rebars in field GPR images. It is verified that inclusion of LSGAN-generated images in the training GPR dataset can increase the target diversity and improve the detection precision by 10%, compared with the model trained on the dataset containing 500 field GPR images.


Ergodesign ◽  
2020 ◽  
Vol 2020 (4) ◽  
pp. 165-176
Author(s):  
Yuriy Malakhov ◽  
Aleksandr Androsov ◽  
Andrey Averchenkov

The article discusses generative adversarial networks for obtaining high quality images. Models, architecture and comparison of network operation are presented. The features of building deep learning models in the process of performing the super-resolution task, as well as methods associated with improving performance, are considered.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhidong Shen ◽  
Ting Zhong

Artificial Intelligence has been widely applied today, and the subsequent privacy leakage problems have also been paid attention to. Attacks such as model inference attacks on deep neural networks can easily extract user information from neural networks. Therefore, it is necessary to protect privacy in deep learning. Differential privacy, as a popular topic in privacy-preserving in recent years, which provides rigorous privacy guarantee, can also be used to preserve privacy in deep learning. Although many articles have proposed different methods to combine differential privacy and deep learning, there are no comprehensive papers to analyze and compare the differences and connections between these technologies. For this purpose, this paper is proposed to compare different differential private methods in deep learning. We comparatively analyze and classify several deep learning models under differential privacy. Meanwhile, we also pay attention to the application of differential privacy in Generative Adversarial Networks (GANs), comparing and analyzing these models. Finally, we summarize the application of differential privacy in deep neural networks.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 325
Author(s):  
Ángel González-Prieto ◽  
Alberto Mozo ◽  
Edgar Talavera ◽  
Sandra Gómez-Canaval

Generative Adversarial Networks (GANs) are powerful machine learning models capable of generating fully synthetic samples of a desired phenomenon with a high resolution. Despite their success, the training process of a GAN is highly unstable, and typically, it is necessary to implement several accessory heuristics to the networks to reach acceptable convergence of the model. In this paper, we introduce a novel method to analyze the convergence and stability in the training of generative adversarial networks. For this purpose, we propose to decompose the objective function of the adversary min–max game defining a periodic GAN into its Fourier series. By studying the dynamics of the truncated Fourier series for the continuous alternating gradient descend algorithm, we are able to approximate the real flow and to identify the main features of the convergence of GAN. This approach is confirmed empirically by studying the training flow in a 2-parametric GAN, aiming to generate an unknown exponential distribution. As a by-product, we show that convergent orbits in GANs are small perturbations of periodic orbits so the Nash equillibria are spiral attractors. This theoretically justifies the slow and unstable training observed in GANs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Karim Armanious ◽  
Tobias Hepp ◽  
Thomas Küstner ◽  
Helmut Dittmann ◽  
Konstantin Nikolaou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document