scholarly journals Generation of High-Precision Ground Penetrating Radar Images Using Improved Least Square Generative Adversarial Networks

2021 ◽  
Vol 13 (22) ◽  
pp. 4590
Author(s):  
Yunpeng Yue ◽  
Hai Liu ◽  
Xu Meng ◽  
Yinguang Li ◽  
Yanliang Du

Deep learning models have achieved success in image recognition and have shown great potential for interpretation of ground penetrating radar (GPR) data. However, training reliable deep learning models requires massive labeled data, which are usually not easy to obtain due to the high costs of data acquisition and field validation. This paper proposes an improved least square generative adversarial networks (LSGAN) model which employs the loss functions of LSGAN and convolutional neural networks (CNN) to generate GPR images. This model can generate high-precision GPR data to address the scarcity of labelled GPR data. We evaluate the proposed model using Frechet Inception Distance (FID) evaluation index and compare it with other existing GAN models and find it outperforms the other two models on a lower FID score. In addition, the adaptability of the LSGAN-generated images for GPR data augmentation is investigated by YOLOv4 model, which is employed to detect rebars in field GPR images. It is verified that inclusion of LSGAN-generated images in the training GPR dataset can increase the target diversity and improve the detection precision by 10%, compared with the model trained on the dataset containing 500 field GPR images.

Author(s):  
Md Golam Moula Mehedi Hasan ◽  
Douglas A. Talbert

Counterfactual explanations are gaining in popularity as a way of explaining machine learning models. Counterfactual examples are generally created to help interpret the decision of a model. In this case, if a model makes a certain decision for an instance, the counterfactual examples of that instance reverse the decision of the model. The counterfactual examples can be created by craftily changing particular feature values of the instance. Though counterfactual examples are generated to explain the decision of machine learning models, in this work, we explore another potential application area of counterfactual examples, whether counterfactual examples are useful for data augmentation. We demonstrate the efficacy of this approach on the widely used “Adult-Income” dataset. We consider several scenarios where we do not have enough data and use counterfactual examples to augment the dataset. We compare our approach with Generative Adversarial Networks approach for dataset augmentation. The experimental results show that our proposed approach can be an effective way to augment a dataset.


2020 ◽  
pp. 42-49
Author(s):  
admin admin ◽  
◽  
◽  
Monika Gupta

Internet of Things (IoT) based healthcare applications have grown exponentially over the past decade. With the increasing number of fatalities due to cardiovascular diseases (CVD), it is the need of the hour to detect any signs of cardiac abnormalities as early as possible. This calls for automation on the detection and classification of said cardiac abnormalities by physicians. The problem here is that, there is not enough data to train Deep Learning models to classify ECG signals accurately because of sensitive nature of data and the rarity of certain cases involved in CVDs. In this paper, we propose a framework which involves Generative Adversarial Networks (GAN) to create synthetic training data for the classes with less data points to improve the performance of Deep Learning models trained with the dataset. With data being input from sensors via cloud and this model to classify the ECG signals, we expect the framework to be functional, accurate and efficient.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bo Pan ◽  
Wei Zheng

Emotion recognition plays an important role in the field of human-computer interaction (HCI). Automatic emotion recognition based on EEG is an important topic in brain-computer interface (BCI) applications. Currently, deep learning has been widely used in the field of EEG emotion recognition and has achieved remarkable results. However, due to the cost of data collection, most EEG datasets have only a small amount of EEG data, and the sample categories are unbalanced in these datasets. These problems will make it difficult for the deep learning model to predict the emotional state. In this paper, we propose a new sample generation method using generative adversarial networks to solve the problem of EEG sample shortage and sample category imbalance. In experiments, we explore the performance of emotion recognition with the frequency band correlation and frequency band separation computational models before and after data augmentation on standard EEG-based emotion datasets. Our experimental results show that the method of generative adversarial networks for data augmentation can effectively improve the performance of emotion recognition based on the deep learning model. And we find that the frequency band correlation deep learning model is more conducive to emotion recognition.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sajila D. Wickramaratne ◽  
Md.Shaad Mahmud

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique used for mapping the functioning human cortex. fNIRS can be widely used in population studies due to the technology’s economic, non-invasive, and portable nature. fNIRS can be used for task classification, a crucial part of functioning with Brain-Computer Interfaces (BCIs). fNIRS data are multidimensional and complex, making them ideal for deep learning algorithms for classification. Deep Learning classifiers typically need a large amount of data to be appropriately trained without over-fitting. Generative networks can be used in such cases where a substantial amount of data is required. Still, the collection is complex due to various constraints. Conditional Generative Adversarial Networks (CGAN) can generate artificial samples of a specific category to improve the accuracy of the deep learning classifier when the sample size is insufficient. The proposed system uses a CGAN with a CNN classifier to enhance the accuracy through data augmentation. The system can determine whether the subject’s task is a Left Finger Tap, Right Finger Tap, or Foot Tap based on the fNIRS data patterns. The authors obtained a task classification accuracy of 96.67% for the CGAN-CNN combination.


Author(s):  
Ioannis Maniadis ◽  
Vassilis Solachidis ◽  
Nicholas Vretos ◽  
Petros Daras

Modern deep learning techniques have proven that they have the capacity to be successful in a wide area of domains and tasks, including applications related to 3D and 2D images. However, their quality depends on the quality and quantity of the data with which models are trained. As the capacity of deep learning models increases, data availability becomes the most significant. To counter this issue, various techniques are utilized, including data augmentation, which refers to the practice of expanding the original dataset with artificially created samples. One approach that has been found is the generative adversarial networks (GANs), which, unlike other domain-agnostic transformation-based methods, can produce diverse samples that belong to a given data distribution. Taking advantage of this property, a multitude of GAN architectures has been leveraged for data augmentation applications. The subject of this chapter is to review and organize implementations of this approach on 3D and 2D imagery, examine the methods that were used, and survey the areas in which they were applied.


Ergodesign ◽  
2020 ◽  
Vol 2020 (4) ◽  
pp. 167-176
Author(s):  
Yuriy Malakhov ◽  
Aleksandr Androsov ◽  
Andrey Averchenkov

The article discusses generative adversarial networks for obtaining high quality images. Models, architecture and comparison of network operation are presented. The features of building deep learning models in the process of performing the super-resolution task, as well as methods associated with improving performance, are considered.


Sign in / Sign up

Export Citation Format

Share Document