scholarly journals Structural and Biochemical Characterization of Cysteinylation in Broadly Neutralizing Antibodies to HIV-1

2021 ◽  
pp. 167303
Author(s):  
Oluwarotimi Omorodion ◽  
Ian A. Wilson
2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Maolin Lu ◽  
Xiaochu Ma ◽  
Nick Reichard ◽  
Daniel S. Terry ◽  
James Arthos ◽  
...  

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer of gp120-gp41 heterodimers mediates virus entry into CD4-positive (CD4+) cells. Single-molecule fluorescence resonance energy transfer (smFRET) has revealed that native Env on the surface of viruses predominantly exists in a pretriggered conformation (state 1) that is preferentially recognized by many broadly neutralizing antibodies (bNAbs). Env is activated by binding receptor CD4, which drives transitions through a default intermediate conformation (state 2) into the three-CD4-bound open conformation (state 3). The application of smFRET to assess the conformational state of existing Env constructs and ligand complexes recently revealed that all current high-resolution structures correspond to downstream states 2 and 3. The structure of state 1, therefore, remains unknown. We sought to identify conditions whereby HIV-1 Env could be stabilized in the pretriggered state 1 for possible structural characterization. Shedding of gp120, known to severely complicate structural studies, can be prevented by using the uncleaved gp160JR-FL precursor with alterations in the protease cleavage site (R508S/R511S) or by introducing a disulfide bridge between gp120 and gp41 designated “SOS” (A501C/T605C). smFRET demonstrated that both shedding-preventing modifications shifted the conformational landscape of Env downstream toward states 2 and 3. However, both membrane-bound Env proteins on the surface of intact viruses remained conformationally dynamic, responsive to state-stabilizing ligands, and able to be stabilized in state 1 by specific ligands such as the Bristol-Myers Squibb (BMS) entry inhibitors. The here-described identification of state 1-stabilizing conditions may enable structural characterization of the state 1 conformation of HIV-1 Env. IMPORTANCE The HIV-1 envelope glycoprotein (Env) opens in response to receptor CD4 binding from a pretriggered (state 1) conformation through a necessary intermediate to the three-CD4-bound conformation. The application of smFRET to test the conformational state of existing Env constructs and ligand complexes used for high-resolution structures recently revealed that they correspond to the downstream conformations. The structure of the pretriggered Env conformation, preferentially recognized by broadly neutralizing antibodies, remains unknown. Here, we identify experimental conditions that stabilize membrane-bound and shedding-resistant virus Env trimers in state 1, potentially facilitating structural characterization of this unknown conformational state.


2015 ◽  
Vol 90 (1) ◽  
pp. 76-91 ◽  
Author(s):  
Nicole A. Doria-Rose ◽  
Jinal N. Bhiman ◽  
Ryan S. Roark ◽  
Chaim A. Schramm ◽  
Jason Gorman ◽  
...  

ABSTRACT The epitopes defined by HIV-1 broadly neutralizing antibodies (bNAbs) are valuable templates for vaccine design, and studies of the immunological development of these antibodies are providing insights for vaccination strategies. In addition, the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of 12 V1V2-directed neutralizing antibodies, CAP256-VRC26, isolated from an HIV-1 clade C-infected donor at years 1, 2, and 4 of infection (N. A. Doria-Rose et al., Nature 509:55–62, 2014, http://dx.doi.org/10.1038/nature13036 ). Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. Thirteen antibodies were isolated from B cell culture, and eight were isolated using trimeric envelope probes for differential single B cell sorting. One of the new antibodies displayed a 10-fold greater neutralization potency than previously published lineage members. This antibody, CAP256-VRC26.25, neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency. Among the viruses neutralized, the median 50% inhibitory concentration was 0.001 μg/ml. All 33 lineage members targeted a quaternary epitope focused on V2. While all known bNAbs targeting the V1V2 region interact with the N160 glycan, the CAP256-VRC26 antibodies showed an inverse correlation of neutralization potency with dependence on this glycan. Overall, our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent. IMPORTANCE Studies of HIV-1 broadly neutralizing antibodies (bNAbs) provide valuable information for vaccine design, and the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of V1V2-directed neutralizing antibodies from an HIV-1 clade C-infected donor. Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. One of the new antibodies, CAP256-VRC26.25, displayed a 10-fold greater neutralization potency than previously described lineage members. It neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency: the median 50% inhibitory concentration was 0.001 μg/ml. Our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent.


2021 ◽  
Author(s):  
Angela M Phillips ◽  
Katherine R Lawrence ◽  
Alief Moulana ◽  
Thomas Dupic ◽  
Jeffrey Chang ◽  
...  

Over the past two decades, several broadly neutralizing antibodies (bnAbs) that confer protection against diverse influenza strains have been isolated. Structural and biochemical characterization of these bnAbs has provided molecular insight into how they bind distinct antigens. However, our understanding of the evolutionary pathways leading to bnAbs, and thus how best to elicit them, remains limited. Here, we measure equilibrium dissociation constants of combinatorially complete mutational libraries for two naturally isolated influenza bnAbs (CR-9114, 16 mutations; CR-6261, 11 mutations), reconstructing all possible intermediates back to the unmutated germline sequences. We find that these two libraries exhibit strikingly different patterns of breadth: while many variants of CR-6261 display moderate affinity to diverse antigens, those of CR-9114 display appreciable affinity only in specific, nested combinations. By examining the extensive pairwise and higher-order epistasis between mutations, we find key sites with strong synergistic interactions that are highly similar across antigens for CR-6261 and different for CR-9114. Together, these features of the binding affinity landscapes strongly favor sequential acquisition of affinity to diverse antigens for CR-9114, while the acquisition of breadth to more similar antigens for CR-6261 is less constrained. These results, if generalizable to other bnAbs, may explain the molecular basis for the widespread observation that sequential exposure favors greater breadth, and such mechanistic insight will be essential for predicting and eliciting broadly protective immune responses.


2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Lixin Yan ◽  
◽  
Lihong Liu ◽  
Yilin Wang ◽  
Xi Huang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jean-François Bruxelle ◽  
Tess Kirilenko ◽  
Nino Trattnig ◽  
Yiqiu Yang ◽  
Matteo Cattin ◽  
...  

AbstractThe occurrence of oligomannose-specific broadly neutralizing antibodies (bnAbs) has spurred efforts to develop immunogens that can elicit similar antibodies. Here, we report on the antigenicity and immunogenicity of a CRM197-conjugate of a previously reported oligomannose mimetic. Oligomannose-specific bnAbs that are less dependent on interactions with the HIV envelope protein sequence showed strong binding to the glycoconjugates, with affinities approximating those reported for their cognate epitope. The glycoconjugate is also recognized by inferred germline precursors of oligomannose-specific bnAbs, albeit with the expected low avidity, supporting its potential as an immunogen. Immunization of human-antibody transgenic mice revealed that only a TLR4-stimulating adjuvant formulation resulted in antibodies able to bind a panel of recombinant HIV trimers. These antibodies bound at relatively modest levels, possibly explaining their inability to neutralize HIV infectivity. Nevertheless, these findings contribute further to understanding conditions for eliciting HIV-cross-reactive oligomannose-specific antibodies and inform on next steps for improving on the elicited response.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 852
Author(s):  
Ashley Lauren Bennett ◽  
Rory Henderson

The HIV-1 envelope glycoprotein (Env) mediates host cell fusion and is the primary target for HIV-1 vaccine design. The Env undergoes a series of functionally important conformational rearrangements upon engagement of its host cell receptor, CD4. As the sole target for broadly neutralizing antibodies, our understanding of these transitions plays a critical role in vaccine immunogen design. Here, we review available experimental data interrogating the HIV-1 Env conformation and detail computational efforts aimed at delineating the series of conformational changes connecting these rearrangements. These studies have provided a structural mapping of prefusion closed, open, and transition intermediate structures, the allosteric elements controlling rearrangements, and state-to-state transition dynamics. The combination of these investigations and innovations in molecular modeling set the stage for advanced studies examining rearrangements at greater spatial and temporal resolution.


Sign in / Sign up

Export Citation Format

Share Document