Phase stability, mechanical property, and electronic structure of an Mg–Ca system

Author(s):  
Peng Zhou ◽  
H.R. Gong
2007 ◽  
Vol 368 (6) ◽  
pp. 495-498 ◽  
Author(s):  
Y.J. Shi ◽  
Y.L. Du ◽  
G. Chen ◽  
G.L. Chen

2016 ◽  
Vol 7 (5) ◽  
pp. 736-740 ◽  
Author(s):  
Takayoshi Ishimoto ◽  
Michihisa Koyama

2017 ◽  
Vol 131 ◽  
pp. 131-140 ◽  
Author(s):  
Reza Mahjoub ◽  
Kevin J. Laws ◽  
Michael Ferry

2019 ◽  
Vol 10 (21) ◽  
pp. 5461-5469
Author(s):  
Wei Xie ◽  
Michihisa Koyama

Based on the concept of density of states (DOS) engineering, we theoretically designed a pseudo-Tc material (Mo–Ru alloy) and investigated its electronic structure, phase stability and catalytic activity by using density functional theory.


1988 ◽  
Vol 141 ◽  
Author(s):  
J.-H. Xu

AbstractThe electronic structure of Al3V vs its two different crystal structures (DO22 and Ll2) were investigated using local density total energy approach. The calculated results of the total energy showed that in Al3V the tetragonal DO22 phase is energetically favored as compared to the cubic Ll2 phase, the total energy in the former case is about 60 mRy/F.U. lower than that in the later case. The calculated lattice constant (a=3.72 Å, c=8.20 Å) is in fairly good agreement with experiment (a=3.778 Å, c=8.326 Å),and the bulk modulus (1.3 Mbar) is comparable with the experimental Young modulus (150 GPa) for Al3Ti. Furthermore, it is interesting to note that the density of states at EF in the tetragonal DO22 phase (0.14 states/eV-F.U.) is about one order magnitude smaller than that in the Ll2 phase (2.89 states/eV-F.U.). The electronic structure of Al3V seems to be fairly satisfactory in explaining its phase stability.


Author(s):  
Ruipeng Gao ◽  
Yefei Li

The electronic structure, mechanical property and thermal expansion of yttrium oxysulfide are calculated from first-principles using the theory of density functional. The calculated cohesive energy indicates its thermodynamic stable nature. From bond structure, the calculated bandgap is obtained as 2.7 eV; and strong covalent bonds exist between Y and O atoms intra 2D [ Y – O ] layer in material, while relatively weak covalent bonds also exist inter 2D [ Y – O ] layer and S atoms. From simulation, it is found that the bulk modulus is about 119.4 GPa for the elastic constants, and the bulk modulus shows weak anisotropy because the surface contours of them are close to a spherical shape. The calculated B/G clearly implies its ductile nature, and the Y 2 O 2 S phase can also be compressed easily. The temperature dependence of thermal expansions is mainly caused by the restoration of thermal energy due to lattice excitations at low temperature. When the temperature is very high, the thermal expansion coefficient increases linearly with temperature increasing. Meanwhile, the heat capacities are also calculated and discussed by thermal expansion and elasticity.


RSC Advances ◽  
2015 ◽  
Vol 5 (2) ◽  
pp. 1620-1627 ◽  
Author(s):  
Ran Yu ◽  
Xiaoyu Chong ◽  
Yehua Jiang ◽  
Rong Zhou ◽  
Wen Yuan ◽  
...  

The phase stability, electronic structure, and elastic and metallic properties of manganese nitrides (Mn4N, Mn2N0.86, Mn3N2, and MnN) were extensively studied by first principles calculations.


Sign in / Sign up

Export Citation Format

Share Document