Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications

Author(s):  
M. Meischel ◽  
J. Eichler ◽  
E. Martinelli ◽  
U. Karr ◽  
J. Weigel ◽  
...  
2011 ◽  
Vol 88 (1) ◽  
pp. 254-259 ◽  
Author(s):  
Huanxin Wang ◽  
Shaokang Guan ◽  
Yisheng Wang ◽  
Hongjian Liu ◽  
Haitao Wang ◽  
...  

2016 ◽  
Vol 113 ◽  
pp. 183-187 ◽  
Author(s):  
Jialin Niu ◽  
Meiping Xiong ◽  
Xingmin Guan ◽  
Jian Zhang ◽  
Hua Huang ◽  
...  

2014 ◽  
Vol 36 ◽  
pp. 336-344 ◽  
Author(s):  
M.F. Ulum ◽  
A. Arafat ◽  
D. Noviana ◽  
A.H. Yusop ◽  
A.K. Nasution ◽  
...  

2016 ◽  
Vol 17 (3-4) ◽  
Author(s):  
Anastasia Myrissa ◽  
Elisabeth Martinelli ◽  
Gábor Szakács ◽  
Leopold Berger ◽  
Johannes Eichler ◽  
...  

AbstractBioresorbable magnesium materials are widely investigated because of their promising properties as orthopedic devices. Pure magnesium (99.99%) and two binary magnesium alloys (Mg2Ag and Mg10Gd) were used to investigate the degradation behavior, the bone adherence and bone-implant interface mechanics of these materials in growing Sprague-Dawley


2013 ◽  
Vol 9 (10) ◽  
pp. 8548-8560 ◽  
Author(s):  
Dina Dziuba ◽  
Andrea Meyer-Lindenberg ◽  
Jan Marten Seitz ◽  
Hazibullah Waizy ◽  
Nina Angrisani ◽  
...  

2021 ◽  
Vol 19 ◽  
pp. 228080002110068
Author(s):  
Hsien-Te Chen ◽  
Hsin-I Lin ◽  
Chi-Jen Chung ◽  
Chih-Hsin Tang ◽  
Ju-Liang He

Here, we present a bone implant system of phase-oriented titanium dioxide (TiO2) fabricated by the micro-arc oxidation method (MAO) on β-Ti to facilitate improved osseointegration. This (101) rutile-phase-dominant MAO TiO2 (R-TiO2) is biocompatible due to its high surface roughness, bone-mimetic structure, and preferential crystalline orientation. Furthermore, (101) R-TiO2 possesses active and abundant hydroxyl groups that play a significant role in enhancing hydroxyapatite formation and cell adhesion and promote cell activity leading to osseointegration. The implants had been elicited their favorable cellular behavior in vitro in the previous publications; in addition, they exhibit excellent shear strength and promote bone–implant contact, osteogenesis, and tissue formation in vivo. Hence, it can be concluded that this MAO R-TiO2 bone implant system provides a favorable active surface for efficient osseointegration and is suitable for clinical applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Eduardo Anitua ◽  
Andreia Cerqueira ◽  
Francisco Romero-Gavilán ◽  
Iñaki García-Arnáez ◽  
Cristina Martinez-Ramos ◽  
...  

Abstract Background Calcium (Ca) is a well-known element in bone metabolism and blood coagulation. Here, we investigate the link between the protein adsorption pattern and the in vivo responses of surfaces modified with calcium ions (Ca-ion) as compared to standard titanium implant surfaces (control). We used LC–MS/MS to identify the proteins adhered to the surfaces after incubation with human serum and performed bilateral surgeries in the medial section of the femoral condyles of 18 New Zealand white rabbits to test osseointegration at 2 and 8 weeks post-implantation (n=9). Results Ca-ion surfaces adsorbed 181.42 times more FA10 and 3.85 times less FA12 (p<0.001), which are factors of the common and the intrinsic coagulation pathways respectively. We also detected differences in A1AT, PLMN, FA12, KNG1, HEP2, LYSC, PIP, SAMP, VTNC, SAA4, and CFAH (p<0.01). At 2 and 8 weeks post-implantation, the mean bone implant contact (BIC) with Ca-ion surfaces was respectively 1.52 and 1.25 times higher, and the mean bone volume density (BVD) was respectively 1.35 and 1.13 times higher. Differences were statistically significant for BIC at 2 and 8 weeks and for BVD at 2 weeks (p<0.05). Conclusions The strong thrombogenic protein adsorption pattern at Ca-ion surfaces correlated with significantly higher levels of implant osseointegration. More effective implant surfaces combined with smaller implants enable less invasive surgeries, shorter healing times, and overall lower intervention costs, especially in cases of low quantity or quality of bone.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 946
Author(s):  
Katharina Kowalewicz ◽  
Elke Vorndran ◽  
Franziska Feichtner ◽  
Anja-Christina Waselau ◽  
Manuel Brueckner ◽  
...  

Calcium magnesium phosphate cements (CMPCs) are promising bone substitutes and experience great interest in research. Therefore, in-vivo degradation behavior, osseointegration and biocompatibility of three-dimensional (3D) powder-printed CMPC scaffolds were investigated in the present study. The materials Mg225 (Ca0.75Mg2.25(PO4)2) and Mg225d (Mg225 treated with diammonium hydrogen phosphate (DAHP)) were implanted as cylindrical scaffolds (h = 5 mm, Ø = 3.8 mm) in both lateral femoral condyles in rabbits and compared with tricalcium phosphate (TCP). Treatment with DAHP results in the precipitation of struvite, thus reducing pore size and overall porosity and increasing pressure stability. Over 6 weeks, the scaffolds were evaluated clinically, radiologically, with Micro-Computed Tomography (µCT) and histological examinations. All scaffolds showed excellent biocompatibility. X-ray and in-vivo µCT examinations showed a volume decrease and increasing osseointegration over time. Structure loss and volume decrease were most evident in Mg225. Histologically, all scaffolds degraded centripetally and were completely traversed by new bone, in which the remaining scaffold material was embedded. While after 6 weeks, Mg225d and TCP were still visible as a network, only individual particles of Mg225 were present. Based on these results, Mg225 and Mg225d appear to be promising bone substitutes for various loading situations that should be investigated further.


Sign in / Sign up

Export Citation Format

Share Document