Micro-CT based finite element modelling and experimental characterization of the compressive mechanical properties of 3-D zirconia scaffolds for bone tissue engineering

Author(s):  
E. Askari ◽  
I.F. Cengiz ◽  
J.L. Alves ◽  
B. Henriques ◽  
P. Flores ◽  
...  
RSC Advances ◽  
2016 ◽  
Vol 6 (112) ◽  
pp. 110557-110565 ◽  
Author(s):  
Yinxian Yu ◽  
Sha Hua ◽  
Mengkai Yang ◽  
Zeze Fu ◽  
Songsong Teng ◽  
...  

A composite scaffold was fabricated with a method involving both electrospinning and 3D printing to give microscale pores and good mechanical properties. Biocompatibility and cell infiltration on the scaffold was evaluated by an in vitro study.


2006 ◽  
Vol 309-311 ◽  
pp. 957-960 ◽  
Author(s):  
Leenaporn Jongpaiboonkit ◽  
C.Y. Lin ◽  
P.H. Krebsbach ◽  
S.J. Hollister ◽  
J.W. Halloran

Calcium phosphate cement is a bioceramic with potential applications for bone-tissue engineering. In this work, controlled porous calcium phosphate scaffolds with interconnected pores were computationally designed by an image-based approach and fabricated by indirect solid freeform fabrication (ISFF) or ‘lost mold’ technique. Voxel finite-element analysis (FEA) showed that mechanical properties of design and fabricated scaffold can be predicted computationally. Scaffolds were then implanted subcutaneously to demonstrate tissue in-growth. Previously, we showed the ability of porous calcium phosphate cement scaffolds to have sufficiently strong mechanical properties for bone tissue engineering applications. This work shows the image-based FEAs from micro-CT scans in vivo (four- and eight weeks). Extensive new bone apposition was noted with micro-CT technique after four- and eight weeks. FEA models of the original design and scaffolds with newly bone formed were compared.


Biomaterials ◽  
2004 ◽  
Vol 25 (9) ◽  
pp. 1683-1696 ◽  
Author(s):  
S.V.N. Jaecques ◽  
H. Van Oosterwyck ◽  
L. Muraru ◽  
T. Van Cleynenbreugel ◽  
E. De Smet ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1319
Author(s):  
Muhammad Umar Aslam Khan ◽  
Wafa Shamsan Al-Arjan ◽  
Mona Saad Binkadem ◽  
Hassan Mehboob ◽  
Adnan Haider ◽  
...  

Bone tissue engineering is an advanced field for treatment of fractured bones to restore/regulate biological functions. Biopolymeric/bioceramic-based hybrid nanocomposite scaffolds are potential biomaterials for bone tissue because of biodegradable and biocompatible characteristics. We report synthesis of nanocomposite based on acrylic acid (AAc)/guar gum (GG), nano-hydroxyapatite (HAp NPs), titanium nanoparticles (TiO2 NPs), and optimum graphene oxide (GO) amount via free radical polymerization method. Porous scaffolds were fabricated through freeze-drying technique and coated with silver sulphadiazine. Different techniques were used to investigate functional group, crystal structural properties, morphology/elemental properties, porosity, and mechanical properties of fabricated scaffolds. Results show that increasing amount of TiO2 in combination with optimized GO has improved physicochemical and microstructural properties, mechanical properties (compressive strength (2.96 to 13.31 MPa) and Young’s modulus (39.56 to 300.81 MPa)), and porous properties (pore size (256.11 to 107.42 μm) and porosity (79.97 to 44.32%)). After 150 min, silver sulfadiazine release was found to be ~94.1%. In vitro assay of scaffolds also exhibited promising results against mouse pre-osteoblast (MC3T3-E1) cell lines. Hence, these fabricated scaffolds would be potential biomaterials for bone tissue engineering in biomedical engineering.


Sign in / Sign up

Export Citation Format

Share Document