Changes of residual stresses on the surface of leucite-reinforced ceramic restoration luted with resin composite cements during aging in water

Author(s):  
Saori Kimura ◽  
Keisuke Ihara ◽  
Hayato Nohira ◽  
Daichi Aizawa ◽  
Nana Sakaeda ◽  
...  
Author(s):  
Daniela K. ZELLER ◽  
Jens FISCHER ◽  
Nadja ROHR

2018 ◽  
Vol 43 (6) ◽  
pp. 619-630 ◽  
Author(s):  
N Rohr ◽  
JA Müller ◽  
J Fischer

ABSTRACT Objective: The purpose of this study was to establish a clinically appropriate light-curing moment for resin composite cements while achieving the highest indirect tensile strength and lowest polymerization shrinkage. Methods and Materials: Polymerization shrinkage of seven resin composite cements (Multilink Automix, Multilink Speed Cem, RelyX Ultimate, RelyX Unicem 2 Automix, Panavia V5, Panavia SA plus, VITA Adiva F-Cem) was measured at ambient temperatures of 23°C and 37°C. Testing was done for autopolymerized and light-cured specimens after light application at either 1, 5, or 10 minutes after mixing. Indirect tensile strength of all cements was measured after 24 hours of storage at temperatures of 23°C and 37°C, for autopolymerized and light-cured specimens after light application 1, 5, or 10 minutes after mixing. To illustrate filler size and microstructures, SEM images of all cements were captured. Statistical analysis was performed with one-way ANOVA followed by post hoc Fisher LSD test (α=0.05). Results: Final polymerization shrinkage of the resin composite cements ranged from 3.2% to 7.0%. An increase in temperature from 23°C to 37°C as well as the light-curing moment resulted in material dependent effects on the polymerization shrinkage and indirect tensile strength of the cements. Polymerization shrinkage of the cements did not correlate with the indirect tensile strength of the cement in the respective groups. Highest indirect tensile strengths were observed for the materials containing a homogeneous distribution of fillers with a size of about 1 μm (Multilink Automix, Panavia V5, VITA Adiva F-Cem). Conclusion: The magnitude of the effect of light-curing moment and temperature increase on polymerization shrinkage and indirect tensile strength of resin composite cements is material dependent and cannot be generalized.


2020 ◽  
Vol 45 (5) ◽  
pp. 528-536
Author(s):  
N Rohr ◽  
N Bertschinger ◽  
J Fischer ◽  
A Filippi ◽  
NU Zitzmann

Clinical Relevance A well-polished cement surface increases the viability and spreading of gingival fibroblasts. The tested resin composite cements did not reveal any cytotoxic effects. SUMMARY Objective: This in vitro study aimed to investigate the effect of cement type and roughness on the viability and cell morphology of human gingival fibroblasts (HGF-1). Methods and Materials: Discs of three adhesive (Panavia V5 [PV5], Multilink Automix [MLA], RelyX Ultimate [RUL] and three self-adhesive (Panavia SA plus [PSA], SpeedCem plus [SCP], RelyX Unicem [RUN]) resin composite cements were prepared with three different roughnesses using silica paper grit P180, P400, or P2500. The cement specimens were characterized by surface roughness and energy-dispersive X-ray spectroscopic mapping. A viability assay was performed after 24 hours of incubation of HGF-1 cells on cement specimens. Cell morphology was examined with scanning electron microscopy. Results: The roughness of the specimens did not differ significantly among the different resin composite cements. Mean Ra values for the three surface treatments were 1.62 ± 0.34 μm for P180, 0.79 ± 0.20 μm for P400, and 0.17 ± 0.08 μm for P2500. HGF-1 viability was significantly influenced by the cement material and the specimens’ roughness, with the highest viability for PSA ≥ RUN = MLA ≥ SCP = PV5 > RUL (p<0.05) and for P2500 = P400 > P180 (p<0.001). Cell morphology did not vary among the materials but was affected by the surface roughness. Conclusion: The composition of resin composite cements significantly affects the cell viability of HGF-1. Smooth resin composite cement surfaces with an Ra of 0.2–0.8 μm accelerate flat cell spreading and formation of filopodia.


2018 ◽  
Vol 34 (11) ◽  
pp. 1702-1709 ◽  
Author(s):  
Monika Astasov-Frauenhoffer ◽  
Stephanie Glauser ◽  
Jens Fischer ◽  
Fredy Schmidli ◽  
Tuomas Waltimo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document