scholarly journals The Impact of Plasma Treatment of Cercon® Zirconia Ceramics on Adhesion to Resin Composite Cements and Surface Properties

2017 ◽  
Vol 8 (Suppl 1) ◽  
pp. S56-S61 ◽  
Author(s):  
Kasra Tabari ◽  
Sepanta Hosseinpour ◽  
Hossein Mohammad-Rahimi
2013 ◽  
Vol 29 (9) ◽  
pp. 935-944 ◽  
Author(s):  
Anja Liebermann ◽  
Christine Keul ◽  
Nora Bähr ◽  
Daniel Edelhoff ◽  
Marlis Eichberger ◽  
...  

Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jure Žigon ◽  
Matjaž Pavlič ◽  
Pierre Kibleur ◽  
Jan Van den Bulcke ◽  
Marko Petrič ◽  
...  

AbstractPlasma treatment is becoming a mature technique for modification of surfaces of various materials, including wood. A better insight in the treatment process and the impact of the plasma on properties of wood bulk are still needed. The study was performed on Norway spruce and common beech wood, as well as their thermally modified variations. The formations of the airborne discharge, as well as mass changes of the treated wood, were monitored. The impact of such treatment on wood-coating interaction was investigated by evaluating the dynamic wettability and penetration into wood. At the wood surface, plasma streamers were observed more intense on denser latewood regions. Wood mass loss was higher with increasing number of passes through the plasma discharge and was lower for thermally modified wood than for unmodified wood. Plasma treatment increased the surface free energy of all wood species and lowered the contact angles of a waterborne coating, these together indicating enhanced wettability after treatment. Finally, the distribution and penetration depth of the coating were studied with X-ray microtomography. It was found that the coating penetrated deeper into beech than into spruce wood. However, the treatment with plasma increased the penetration of the coating only into spruce wood.


Author(s):  
Débora Michelle Gonçalves de Amorim ◽  
Aretha Heitor Veríssimo ◽  
Anne Kaline Claudino Ribeiro ◽  
Rodrigo Othávio de Assunção e Souza ◽  
Isauremi Vieira de Assunção ◽  
...  

AbstractTo investigate the impact of radiotherapy on surface properties of restorative dental materials. A conventional resin composite—CRC (Aura Enamel), a bulk-fill resin composite—BFRC (Aura Bulk-fill), a conventional glass ionomer cement—CGIC (Riva self cure), and a resin-modified glass ionomer cement—RMGIC (Riva light cure) were tested. Forty disc-shaped samples from each material (8 mm diameter × 2 mm thickness) (n = 10) were produced according to manufacturer directions and then stored in water distilled for 24 h. Surface wettability (water contact angle), Vickers microhardness, and micromorphology through scanning electron microscopy (SEM) before and after exposition to ionizing radiation (60 Gy) were obtained. The data were statistically evaluated using the two-way ANOVA and Tukey posthoc test (p < 0.05). Baseline and post-radiation values of contact angles were statistically similar for CRC, BFRC, and RMGIC, whilst post-radiation values of contact angles were statistically lower than baseline ones for CGIC. Exposition to ionizing radiation statistically increased the microhardness of CRC, and statistically decreased the microhardness of CGIC. The surface micromorphology of all materials was changed post-radiation. Exposure to ionizing radiation negatively affected the conventional glass ionomer tested, while did not alter or improved surface properties testing of the resin composites and the resin-modified glass ionomer cement tested.


Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Javed Alam ◽  
Arun Kumar Shukla ◽  
Mohammad Azam Ansari ◽  
Fekri Abdulraqeb Ahmed Ali ◽  
Mansour Alhoshan

We fabricated a nanofiltration membrane consisting of a polyaniline (PANI) film on a polyphenylsulfone (PPSU) substrate membrane. The PANI film acted as a potent separation enhancer and antimicrobial coating. The membrane was analyzed via scanning electron microscopy and atomic force microscopy to examine its morphology, topography, contact angle, and zeta potential. We aimed to investigate the impact of the PANI film on the surface properties of the membrane. Membrane performance was then evaluated in terms of water permeation and rejection of methylene blue (MB), an organic dye. Coating the PPSU membrane with a PANI film imparted significant advantages, including finely tuned nanometer-scale membrane pores and tailored surface properties, including increased hydrophilicity and zeta potential. The PANI film also significantly enhanced separation of the MB dye. The PANI-coated membrane rejected over 90% of MB with little compromise in membrane permeability. The PANI film also enhanced the antimicrobial activity of the membrane. The bacteriostasis (BR) values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Escherichia coli were 63.5% and 95.2%, respectively. The BR values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Staphylococcus aureus were 70.6% and 88.0%, respectively.


2007 ◽  
Vol 26 (5) ◽  
pp. 613-622 ◽  
Author(s):  
Masahiro ONO ◽  
Toru NIKAIDO ◽  
Masaomi IKEDA ◽  
Susumu IMAI ◽  
Nobuhiro HANADA ◽  
...  

2020 ◽  
Vol 992 ◽  
pp. 658-662
Author(s):  
M.A. Mokeev ◽  
L.A. Urkhanova ◽  
A.N. Khagleev ◽  
Denis B. Solovev

Mechanical, chemical and plasma treatment are the main kind of treatment of polytetrafluoroethylene (PTFE) films. Each method is different from each other by the adhesive force: the value of the wetting angle. Mechanical treatment allows different particles to permeate into the structure of the polymer. Chemical treatment creates new functional groups on the polymer surface, but this method is toxic and dangerous. Plasma treatment, in a glow discharge non-thermal plasma, is a more ecological and practical method. The experiment showed that the plasma treatment successfully increases the adhesion, this has been proven by infrared spectroscopy and scanning electron microscopy. According to the obtained data of the wetting angle, the regression equation was derived. A graphical model is constructed by regression equations allows you to determine the main processing factor and choose the optimal values of treatment.


Coatings ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. 123 ◽  
Author(s):  
Mingyang Peng ◽  
Lee Li ◽  
Jiaming Xiong ◽  
Kui Hua ◽  
Shufan Wang ◽  
...  

2019 ◽  
Vol 16 ◽  
pp. 8-14 ◽  
Author(s):  
R. Talviste ◽  
O. Galmiz ◽  
M. Stupavská ◽  
Z. Tučeková ◽  
K. Kaarna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document