Correctly computing targeting efficiency in magnetically targeted delivery from particle tracking models

Author(s):  
Nina Podoliak ◽  
Giles Richardson
Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3080
Author(s):  
Lili Zhou ◽  
Manshu Zou ◽  
Kun Zhu ◽  
Shuangcheng Ning ◽  
Xinhua Xia

Background: Liver cancer is a common malignant tumor worldwide, and its morbidity and mortality increase each year. The disease has a short course and high mortality, making it a serious threat to human health. Purpose: The objective of this study was to create novel liver-targeting nanoliposomes to encapsulate cantharidin (CTD) as a potential treatment for hepatic carcinoma. Methods: 3-Galactosidase-30-stearyl deoxyglycyrrhetinic acid (11-DGA-3-O-Gal)-modified liposomes (11-DGA-3-O-Gal-CTD-lip) for the liver-targeted delivery of CTD were prepared via the film-dispersion method and characterized. In vitro analyses of the effects on cellular cytotoxicity, cell migration, cell cycle, and cell apoptosis were carried out and an in vivo pharmacokinetics study and tissue distribution analysis were performed. Results: Compared with unmodified liposomes (CTD-lip), 11-DGA-3-O-Gal-CTD-lip showed higher cytotoxicity and increased the inhibition of HepG2 cell migration, but they did not increase the apoptotic rate of cells. The inhibition mechanism of 11-DGA-3-O-Gal-CTD-lip on hepatocellular carcinoma was partly through cell cycle arrest at the S phase. Analysis of pharmacokinetic parameters indicated that 11-DGA-3-O-Gal-CTD-lip were eliminated more rapidly than CTD-lip. Regarding tissue distribution, the targeting efficiency of 11-DGA-3-O-Gal-CTD-lip to the liver was (41.15 ± 3.28)%, relative targeting efficiency was (1.53 ± 0.31)%, relative uptake rate was( 1.69 ± 0.37)%, and peak concentration ratio was (2.68 ± 0.12)%. Conclusion: 11-DGA-3-O-Gal-CTD-lip represent a promising nanocarrier for the liver-targeted delivery of antitumor drugs to treat hepatocellular carcinoma.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hea-Young Cho ◽  
Chong Ki Lee ◽  
Yong-Bok Lee

This study attempted to prepare polyethylene-glycol modified (PEGylated) and folate-PEGylated liposomes containing paclitaxel (Ptx) in order to reduce the toxicity and improve the bioavailability and biocompatibility by targeting drugs to the lymphatics using cancer cell specific ligand folate to prevent metastasis via the lymphatic system. Liposomes were prepared by lipid film hydration method using PEG and folate-PEG as surface modifiers. The mean particle size and encapsulation efficiency of liposomes were114±6.81 nm and81±2.3% for PEGylated liposome and122±4.87 nm and88±2.0% for folate-PEGylated liposome, respectively. According to stability test, it could be confirmed that PEGylated and folate-PEGylated liposomes were stable for at least 5 days. After intravenous administration of the PEGylated and folate-PEGylated liposomes to rats, theCLt(total clearance) andt1/2(half-life) were significantly different (P<0.05) compared with those of PADEXOL Inj. In targeting efficiency, calculated as the concentration ratio of Ptx in lymph nodes and plasma, there was significant increase in targeting efficiency at lymph nodes (P<0.05). From these results, we could conclude that the prepared Ptx-containing PEGylated and folate-PEGylated liposomes are good candidates for the targeted delivery of the drug to lymphatic system.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3291 ◽  
Author(s):  
Laura Pandolfi ◽  
Vanessa Frangipane ◽  
Claudia Bocca ◽  
Alessandro Marengo ◽  
Erika Tarro Genta ◽  
...  

Collagen Tissue Disease–associated Interstitial Lung Fibrosis (CTD-ILDs) and Bronchiolitis Obliterans Syndrome (BOS) represent severe lung fibrogenic disorders, characterized by fibro-proliferation with uncontrolled extracellular matrix deposition. Hyaluronic acid (HA) plays a key role in fibrosis with its specific receptor, CD44, overexpressed by CTD-ILD and BOS cells. The aim is to use HA-liposomes to develop an inhalatory treatment for these diseases. Liposomes with HA of two molecular weights were prepared and characterized. Targeting efficiency was assessed toward CTD-ILD and BOS cells by flow cytometry and confocal microscopy and immune modulation by RT-PCR and ELISA techniques. HA-liposomes were internalized by CTD-ILD and BOS cells expressing CD44, and this effect increased with higher HA MW. In THP-1 cells, HA-liposomes decreased pro-inflammatory cytokines IL-1β, IL-12, and anti-fibrotic VEGF transcripts but increased TGF-β mRNA. However, upon analyzing TGF-β release from healthy donors-derived monocytes, we found liposomes did not alter the release of active pro-fibrotic cytokine. All liposomes induced mild activation of neutrophils regardless of the presence of HA. HA liposomes could be also applied for lung fibrotic diseases, being endowed with low pro-inflammatory activity, and results confirmed that higher MW HA are associated to an increased targeting efficiency for CD44 expressing LFs-derived from BOS and CTD-ILD patients.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Sharma Pankaj ◽  
Tailang Mukul

The aim of present work was to prepare colon specific delivery system of Ornidazole using different ratio of shellac, zein and guar gum. From study of various literature it revealed that shellac, zein and guar gum released drug from dosage form at the pH of 6.9, 11.5, 7-9 respectively. The main problem associated with colon targeted drug delivery system is degradation of drug in the acidic environment of stomach to circumvent the present problem different combinations of shellac, zein and guar gum were employed in the formulation of colon targeted tablet. Several preformulation parameters were determined such as melting point, FTIR spectroscopy, preparation of calibration curve, determination of λmax and partition coefficient. After the preformulation studies, next steps were preparation of core tablets, evaluation of core of tablets and coating of tablets. The data obtained from preformulation study seven formulations were developed and evaluated for various parameters. Based on evaluated parameter such as weight variation, friability, dissolution study, invitro drug release etc. the F7 formulation show better results colon targeted tablets. Drug content in F7 formulation was 95% and drug release after 6 hrs was 96%. Formulation containing combination of shellac, zein and guar gum released least amount of drug in the acidic environment of stomach and released most of the drug in colon. It is evide


2020 ◽  
Author(s):  
Xizheng Sun ◽  
Reika Tokunaga ◽  
Yoko Nagai ◽  
Ryo Miyahara ◽  
Akihiro Kishimura ◽  
...  

<p><a></a><a></a><a>We have validated that ligand peptides designed from antigen peptides could be used for targeting specific major histocompatibility complex class I (MHC-I)</a> molecules on cell surface. To design the ligand peptides, we used reported antigen peptides for each MHC-I molecule with high binding affinity. From the crystal structure of the peptide/MHC-I complexes, we determined a modifiable residue in the antigen peptides and replaced this residue with a lysine with an ε-amine group modified with functional molecules. The designed ligand peptides successfully bound to cells expressing the corresponding MHC-I molecules via exchange of peptides bound to the MHC-I. We demonstrated that the peptide ligands could be used to transport a protein or a liposome to cells expressing the corresponding MHC-I. The present strategy may be useful for targeted delivery to cells overexpressing MHC-I, which have been observed autoimmune diseases.</p>


Sign in / Sign up

Export Citation Format

Share Document