scholarly journals Comprehensive Screening of Gene Copy Number Aberrations in Formalin-Fixed, Paraffin-Embedded Solid Tumors Using Molecular Inversion Probe–Based Single-Nucleotide Polymorphism Array

2016 ◽  
Vol 18 (5) ◽  
pp. 676-687 ◽  
Author(s):  
Rajesh R. Singh ◽  
Meenakshi Mehrotra ◽  
Hui Chen ◽  
Alaa A. Almohammedsalim ◽  
Ayesagul Sahin ◽  
...  
2017 ◽  
Vol 212-213 ◽  
pp. 24-31 ◽  
Author(s):  
Meenakshi Mehrotra ◽  
Rajyalakshmi Luthra ◽  
Ronald Abraham ◽  
Bal Mukund Mishra ◽  
Shumaila Virani ◽  
...  

2009 ◽  
Vol 133 (12) ◽  
pp. 1917-1922
Author(s):  
Federico A. Monzon ◽  
Karla Alvarez ◽  
Zoran Gatalica ◽  
Julia A. Bridge ◽  
Marilu Nelson ◽  
...  

Abstract Context.—Renal epithelial neoplasms have characteristic chromosomal imbalances, and we have shown previously that virtual karyotypes derived from single-nucleotide polymorphism microarrays can be performed on formalin-fixed, paraffin-embedded tissue. Objective.—To perform a direct comparison of virtual and conventional karyotypes to evaluate concordance of results. Design.—Twenty archival formalin-fixed, paraffin-embedded tumor samples with preexisting, conventional cytogenetic results were analyzed with Affymetrix 10K 2.0 or 250K Nsp single-nucleotide polymorphism microarrays. Results.—Nineteen samples yielded adequate virtual karyotypes for interpretation. Eight samples showed complete agreement between the 2 techniques, and 8 samples showed partial agreement. The disease-defining lesions (eg, loss of 3p for clear cell carcinoma) were identified in all 19 cases by virtual karyotypes and in 15 cases by conventional karyotypes. Virtual and conventional karyotypic findings were concordant in the identification of these disease-defining lesions in 86% (13 of 15) of cases. In 3 cases, virtual karyotypes identified lesions consistent with the morphologic diagnosis, whereas the conventional karyotypes were unsuccessful because of insufficient tumor representation or stromal overgrowth. Two cases with acquired uniparental disomy were identified by single-nucleotide polymorphism arrays, and 5 cases with translocations were identified by conventional karyotype. Conclusions.—Our results show that both techniques are able to identify the characteristic chromosomal abnormality for renal tumor subtypes in most cases. Discrepancies can be explained by inherent limitations of each technique, inadequate tumor sampling, and tumor heterogeneity. We conclude that virtual karyotyping is a robust alternative to conventional cytogenetics for the evaluation of chromosomal anomalies in formalin-fixed, paraffin-embedded tissues from renal epithelial neoplasms.


2019 ◽  
Author(s):  
Pauline C. Schut ◽  
Erwin Brosens ◽  
Frietson Galis ◽  
Clara M. A. Ten Broek ◽  
Inge M.M. Baijens ◽  
...  

AbstractObjectiveTo assess the vertebral pattern in a cohort of deceased fetuses and neonates, and to study the possible impact of DNA Copy Number Variations (CNVs) in coding regions and/or disturbing enhancers on the development of the vertebral pattern.MethodRadiographs of 445 fetuses and infants, deceased between 2009 and 2015, were assessed. Terminations of pregnancies, stillbirths and neonatal deaths were included. Patients were excluded if the vertebral pattern could not be determined. Copy number profiles of 265 patients were determined using single nucleotide polymorphism array.Results274/374 patients (73.3%) had an abnormal vertebral pattern. Cervical ribs were present in 188/374 (50.3%) and were significantly more common in stillbirths (69/128 (53.9%)) and terminations of pregnancies (101/188 (53.7%)), compared to live births (18/58, 31.0%, p = 0.006). None of the rare CNVs were recurrent or overlapped candidate genes for vertebral patterning.ConclusionThe presence of an abnormal vertebral pattern, particularly in the cervical region, could be a sign of disruption at critical, highly interactive and conserved stages of embryogenesis. The vertebral pattern might provide valuable information regarding fetal and neonatal outcome. CNV analyses did not identify a mutual genetic cause for the occurrence of vertebral patterning abnormalities, indicating genetic heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document