rare cnvs
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Matthew Hoi Kin Chau ◽  
Jicheng Qian ◽  
Zihan Chen ◽  
Ying Li ◽  
Yu Zheng ◽  
...  

Background: Low-pass genome sequencing (GS) detects clinically significant copy number variants (CNVs) in prenatal diagnosis. However, detection at improved resolutions leads to an increase in the number of CNVs identified, increasing the difficulty of clinical interpretation and management.Methods: Trio-based low-pass GS was performed in 315 pregnancies undergoing invasive testing. Rare CNVs detected in the fetuses were investigated. The characteristics of rare CNVs were described and compared to curated CNVs in other studies.Results: A total of 603 rare CNVs, namely, 597 constitutional and 6 mosaic CNVs, were detected in 272 fetuses (272/315, 86.3%), providing 1.9 rare CNVs per fetus (603/315). Most CNVs were smaller than 1 Mb (562/603, 93.2%), while 1% (6/603) were mosaic. Forty-six de novo (7.6%, 46/603) CNVs were detected in 11.4% (36/315) of the cases. Eighty-four CNVs (74 fetuses, 23.5%) involved disease-causing genes of which the mode of inheritance was crucial for interpretation and assessment of recurrence risk. Overall, 31 pathogenic/likely pathogenic CNVs were detected, among which 25.8% (8/31) were small (<100 kb; n = 3) or mosaic CNVs (n = 5).Conclusion: We examined the landscape of rare CNVs with parental inheritance assignment and demonstrated that they occur frequently in prenatal diagnosis. This information has clinical implications regarding genetic counseling and consideration for trio-based CNV analysis.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1449
Author(s):  
Luca M. Schierbaum ◽  
Sophia Schneider ◽  
Stefan Herms ◽  
Sugirthan Sivalingam ◽  
Julia Fabian ◽  
...  

Lower urinary tract obstruction (LUTO) is, in most cases, caused by anatomical blockage of the bladder outlet. The most common form are posterior urethral valves (PUVs), a male-limited phenotype. Here, we surveyed the genome of 155 LUTO patients to identify disease-causing CNVs. Raw intensity data were collected for CNVs detected in LUTO patients and 4.392 healthy controls using CNVPartition, QuantiSNP and PennCNV. Overlapping CNVs between patients and controls were discarded. Additional filtering implicated CNV frequency in the database of genomic variants, gene content and final visual inspection detecting 37 ultra-rare CNVs. After, prioritization qPCR analysis confirmed 3 microduplications, all detected in PUV patients. One microduplication (5q23.2) occurred de novo in the two remaining microduplications found on chromosome 1p36.21 and 10q23.31. Parental DNA was not available for segregation analysis. All three duplications comprised 11 coding genes: four human specific lncRNA and one microRNA. Three coding genes (FBLIM1, SLC16A12, SNCAIP) and the microRNA MIR107 have previously been shown to be expressed in the developing urinary tract of mouse embryos. We propose that duplications, rare or de novo, contribute to PUV formation, a male-limited phenotype.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0248254
Author(s):  
Joanna Martin ◽  
Kimiya Asjadi ◽  
Leon Hubbard ◽  
Kimberley Kendall ◽  
Antonio F. Pardiñas ◽  
...  

Anxiety and depression are common mental health disorders and have a higher prevalence in females. They are modestly heritable, share genetic liability with other psychiatric disorders, and are highly heterogeneous. There is evidence that genetic liability to neurodevelopmental disorders, such as attention deficit hyperactivity disorder (ADHD) is associated with anxiety and depression, particularly in females. We investigated sex differences in family history for neurodevelopmental and psychiatric disorders and neurodevelopmental genetic risk burden (indexed by ADHD polygenic risk scores (PRS) and rare copy number variants; CNVs) in individuals with anxiety and depression, also taking into account age at onset. We used two complementary datasets: 1) participants with a self-reported diagnosis of anxiety or depression (N = 4,178, 65.5% female; mean age = 41.5 years; N = 1,315 with genetic data) from the National Centre for Mental Health (NCMH) cohort and 2) a clinical sample of 13,273 (67.6% female; mean age = 45.2 years) patients with major depressive disorder (MDD) from the Psychiatric Genomics Consortium (PGC). We tested for sex differences in family history of psychiatric problems and presence of rare CNVs (neurodevelopmental and >500kb loci) in NCMH only and for sex differences in ADHD PRS in both datasets. In the NCMH cohort, females were more likely to report family history of neurodevelopmental and psychiatric disorders, but there were no robust sex differences in ADHD PRS or presence of rare CNVs. There was weak evidence of higher ADHD PRS in females compared to males in the PGC MDD sample, particularly in those with an early onset of MDD. These results do not provide strong evidence of sex differences in neurodevelopmental genetic risk burden in adults with anxiety and depression. This indicates that sex may not be a major index of neurodevelopmental genetic heterogeneity, that is captured by ADHD PRS and rare CNV burden, in adults with anxiety and depression.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1213
Author(s):  
Wenjing Lai ◽  
Xin Feng ◽  
Ming Yue ◽  
Prudence W.H. Cheung ◽  
Vanessa N.T. Choi ◽  
...  

Congenital scoliosis (CS) is a lateral curvature of the spine resulting from congenital vertebral malformations (CVMs) and affects 0.5–1/1000 live births. The copy number variant (CNV) at chromosome 16p11.2 has been implicated in CVMs and recent studies identified a compound heterozygosity of 16p11.2 microdeletion and TBX6 variant/haplotype causing CS in multiple cohorts, which explains about 5–10% of the affected cases. Here, we studied the genetic etiology of CS by analyzing CNVs in a cohort of 67 patients with congenital hemivertebrae and 125 family controls. We employed both candidate gene and family-based approaches to filter CNVs called from whole exome sequencing data. This identified 12 CNVs in four scoliosis-associated genes (TBX6, NOTCH2, DSCAM, and SNTG1) as well as eight recessive and 64 novel rare CNVs in 15 additional genes. Some candidates, such as DHX40, NBPF20, RASA2, and MYSM1, have been found to be associated with syndromes with scoliosis or implicated in bone/spine development. In particular, the Mysm1 mutant mouse showed spinal deformities. Our findings suggest that, in addition to the 16p11.2 microdeletion, other CNVs are potentially important in predisposing to CS.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009679
Author(s):  
Enrique Audain ◽  
Anna Wilsdon ◽  
Jeroen Breckpot ◽  
Jose MG Izarzugaza ◽  
Tomas W. Fitzgerald ◽  
...  

Numerous genetic studies have established a role for rare genomic variants in Congenital Heart Disease (CHD) at the copy number variation (CNV) and de novo variant (DNV) level. To identify novel haploinsufficient CHD disease genes, we performed an integrative analysis of CNVs and DNVs identified in probands with CHD including cases with sporadic thoracic aortic aneurysm. We assembled CNV data from 7,958 cases and 14,082 controls and performed a gene-wise analysis of the burden of rare genomic deletions in cases versus controls. In addition, we performed variation rate testing for DNVs identified in 2,489 parent-offspring trios. Our analysis revealed 21 genes which were significantly affected by rare CNVs and/or DNVs in probands. Fourteen of these genes have previously been associated with CHD while the remaining genes (FEZ1, MYO16, ARID1B, NALCN, WAC, KDM5B and WHSC1) have only been associated in small cases series or show new associations with CHD. In addition, a systems level analysis revealed affected protein-protein interaction networks involved in Notch signaling pathway, heart morphogenesis, DNA repair and cilia/centrosome function. Taken together, this approach highlights the importance of re-analyzing existing datasets to strengthen disease association and identify novel disease genes and pathways.


2021 ◽  
Vol 8 ◽  
Author(s):  
Luke Dowden ◽  
David Tucker ◽  
Sian Morgan ◽  
Orhan Uzun ◽  
Yasir Ahmed Syed

Rare pathogenic copy number variants (CNVs) are genetic rearrangements that have been associated with an increased risk for congenital heart disorders (CHDs). However, the association of CNVs with atypical brain development, leading to neurodevelopmental disorders (NDDs), in the presence of CHDs remains unclear. We attempted to explore this association by establishing the prevalence and burden of CNVs associated with CHD in a Welsh population and by studying the effect of rare CNVs associated with CHDs in mediating the risk of NDDs. Toward this goal, we analyzed data from the Congenital Anomaly Register for Wales (CARIS), referred from hospitals in Wales between 1998 and 2018, which included 1,113 subjects in total. Of these, 785 subjects were included in the study following application of the exclusion criteria, and a total of 28 rare CNVs associated with CHD were analyzed. The findings from this cohort study identified 22q11.2 deletion as the most prominent CNV across the cohort. Our data demonstrates that the survival rate of the cohort after 3 years was 99.9%, and mortality fell significantly between 1 and 2 years and between 2 and 3 years [F(1,27) = 10, p = 0.0027; F(1,27) = 5.8, p = 0.0222]. Importantly, the data set revealed a positive correlation between the incidence of congenital heart disease and the incidence of neurodevelopmental abnormalities in patients with CNVs across the whole cohort [95% CI (0.4062, 0.8449), p < 0.0001, r = 0.6829]. Additionally, we identified significant CNVs that result in the co-morbidity of CHD and NDD and show that septal defects and global developmental delay are major congenital defects. Further research should identify a common molecular mechanism leading to the phenotypic comorbidity of CHDs and NDDs, arising from a common CNV, which can have an implication for improving risk classification and for fetal neuroprotection strategies in the affected children and in precision medicine.


2021 ◽  
Author(s):  
Rackeb Tesfaye ◽  
Guillaume Huguet ◽  
Zoe Schmilovich ◽  
Mor Absa Loum ◽  
Elise Douard ◽  
...  

Sleep disturbance is prevalent in youth with Autism Spectrum Disorder (ASD). Researchers have posited that circadian dysfunction may contribute to sleep problems or exacerbate ASD symptomatology. However, there is limited genetic evidence of this. It is also unclear how insomnia risk genes identified through GWAS in a general population are related to ASD risk and common sleep problems like insomnia in ASD. We investigated the contribution of copy number variants (CNVs) encompassing circadian pathway genes and insomnia risk genes to ASD risk as well as parent reported sleep disturbances in children diagnosed with ASD. We studied 5860 ASD probands and 2092 unaffected siblings from the Simons Simplex Collection and MSSNG database, as well as 7463 individuals from two unselected populations (IMAGEN and Generation Scotland). We identified 320 and 626 rare CNVs encompassing circadian genes and insomnia risk genes respectively. Deletions and duplications with circadian genes were overrepresented in ASD probands compared to siblings and unselected controls. For insomnia-risk genes, deletions (but not duplications) were also associated with ASD. Results remained significant after adjusting for cognitive ability. CNVs containing circadian pathway and insomnia risk genes showed a stronger association with ASD, compared to CNVs containing other genes. Duplications containing circadian genes were associated with shorter sleep duration(22 minutes). Only insomnia risk genes intolerant to haploinsufficiency increased insomnia traits when duplicated. Overall, CNVs encompassing circadian and insomnia risk genes increase ASD risk despite small impacts on sleep disturbances.


2021 ◽  
Author(s):  
Joe Dennis ◽  
Jonathan Tyrer ◽  
Logan Walker ◽  
Kyriaki Michailidou ◽  
Leila Dorling ◽  
...  

Abstract BackgroundCopy number variants (CNVs) are pervasive in the human genome but potential disease associations with rare CNVs have not been comprehensively assessed in large datasets. We analysed rare CNVs in genes and non-coding regions for 86,788 breast cancer cases and 76,122 controls of European ancestry with genome-wide array data.ResultsGene burden tests detected the strongest association for deletions in BRCA1 (P= 3.7E-18). Nine other genes were associated with a p-value < 0.01 including known susceptibility genes CHEK2 (P= 0.0008), ATM (P= 0.002) and BRCA2 (P= 0.008). Outside the known genes we detected associations with p-values < 0.001 for either overall or subtype-specific breast cancer at nine deletion regions and four duplication regions. Three of the deletion regions were in established common susceptibility loci.ConclusionsThis is the first genome-wide analysis of rare CNVs in a large breast cancer case-control dataset. We detected associations with exonic deletions in established breast cancer susceptibility genes. We also detected suggestive associations with non-coding CNVs in known and novel loci with large effects sizes. Larger sample sizes will be required to reach robust levels of statistical significance.


2021 ◽  
Author(s):  
Joe Dennis ◽  
Jonathan P. Tyrer ◽  
Logan C. Walker ◽  
Kyriaki Michailidou ◽  
Leila Dorling ◽  
...  

Background: Copy number variants (CNVs) are pervasive in the human genome but potential disease associations with rare CNVs have not been comprehensively assessed in large datasets. We analysed rare CNVs in genes and non-coding regions for 86,788 breast cancer cases and 76,122 controls of European ancestry with genome-wide array data. Results: Gene burden tests detected the strongest association for deletions in BRCA1 (P= 3.7E-18). Nine other genes were associated with a p-value < 0.01 including known susceptibility genes CHEK2 (P= 0.0008), ATM (P= 0.002) and BRCA2 (P= 0.008). Outside the known genes we detected associations with p-values < 0.001 for either overall or subtype-specific breast cancer at nine deletion regions and four duplication regions. Three of the deletion regions were in established common susceptibility loci. Conclusions: This is the first genome-wide analysis of rare CNVs in a large breast cancer case-control dataset. We detected associations with exonic deletions in established breast cancer susceptibility genes. We also detected suggestive associations with non-coding CNVs in known and novel loci with large effects sizes. Larger sample sizes will be required to reach robust levels of statistical significance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Josep Pol-Fuster ◽  
Francesca Cañellas ◽  
Laura Ruiz-Guerra ◽  
Aina Medina-Dols ◽  
Bàrbara Bisbal-Carrió ◽  
...  

Psychosis is a highly heritable and heterogeneous psychiatric condition. Its genetic architecture is thought to be the result of the joint effect of common and rare variants. Families with high prevalence are an interesting approach to shed light on the rare variant’s contribution without the need of collecting large cohorts. To unravel the genomic architecture of a family enriched for psychosis, with four affected individuals, we applied a system genomic approach based on karyotyping, genotyping by whole-exome sequencing to search for rare single nucleotide variants (SNVs) and SNP array to search for copy-number variants (CNVs). We identified a rare non-synonymous variant, g.39914279 C &gt; G, in the MACF1 gene, segregating with psychosis. Rare variants in the MACF1 gene have been previously detected in SCZ patients. Besides, two rare CNVs, DUP3p26.3 and DUP16q23.3, were also identified in the family affecting relevant genes (CNTN6 and CDH13, respectively). We hypothesize that the co-segregation of these duplications with the rare variant g.39914279 C &gt; G of MACF1 gene precipitated with schizophrenia and schizoaffective disorder.


Sign in / Sign up

Export Citation Format

Share Document