An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation

2004 ◽  
Vol 171 (2) ◽  
pp. 225-232 ◽  
Author(s):  
R. Scott Prosser ◽  
Paul A. Luchette
2003 ◽  
Vol 58 (11) ◽  
pp. 638-644 ◽  
Author(s):  
M. Grottel ◽  
A. Pajzderska ◽  
J. Wasicki

The proton NMR second moment and spin-lattice relaxation time have been studied for polycrystalline inclusion compounds of thiourea pyridinium chloride, bromide, iodide and their perdeuterated analogues in a wide temperature range. The pyridinium cation reorientation around the pseudohexagonal C6’ symmetry axis over inequivalent barriers and hindered rotation of the thiourea molecule around its C=S bond have been revealed. The activation parameters of the both motions have been found.


1995 ◽  
Vol 50 (8) ◽  
pp. 742-748 ◽  
Author(s):  
M. Grottel ◽  
A. Kozak ◽  
Z. Pająk

Abstract Proton and fluorine NMR linewidths, second moments, and spin-lattice relaxation times of polycrystalline [C(NH2)3]2SbF5 and C(NH2)3SbF6 were studied in a wide temperature range. For the pentafluoroantimonate, C3-reorientation of the guanidinium cation and C4-reorientation of the SbF5 anion were revealed and their activation parameters determined. The dynamical inequivalence of the two guanidinium cations was evidenced. For the hexafluoroantimonate, two solid-solid phase transitions were found. In the low temperature phase the guanidinium cation undergoes C3 reorien­ tation while the SbF6 anion reorients isotropically. The respective activation parameters were derived. At high temperatures new ionic plastic phases were evidenced.


2004 ◽  
Vol 59 (7-8) ◽  
pp. 505-509 ◽  
Author(s):  
M. Grottela ◽  
A. Kozak ◽  
A. Pajzderska ◽  
W. Szczepański ◽  
J. Wąsicki

The proton NMR second moment and spin-lattice relaxation time have been studied for polycrystalline thiourea pyridinium nitrate inclusion compound and its perdeuderated analogues in a wide temperature range. The reorientation of two dynamically different pyridinium cations around their pseudohexagonal symmetry axis taking place over inequivalent barriers have been revealed in the low-temperature phase. Activation parameters for these motions have been derived. A symmetrization of the potential barriers has been observed at the transition from intermediate to the high temperature phase. The motion of thiourea molecules has been also evidenced, but could not be unambiguously described.


1996 ◽  
Vol 51 (9) ◽  
pp. 991-996 ◽  
Author(s):  
M. Grottel ◽  
A. Kozak ◽  
Z. Pająk

Abstract Proton and fluorine NMR second moments and spin-lattice relaxation times of polycrystalline guanidinium hexafluorozirconate and its deuterated analogue were studied in laboratory (60 MHz) and rotating (H1 = 20 G) frames over a wide range of temperature. An analysis of the experimental results enabled us to reveal a dynamical inequivalence of two crystallographically independent cations and an unexpected high mobility of nonspherical anion dimers. A comparison of the ions dynamics in 2:1 complex studied with the guanidinium 1:1 and 3:1 complexes has shown a significant contribution of the hydrogen bonds to the potential barriers hindering the anion reorientations. At low temperatures a proton motion in the hydrogen bond and at 400 K a solid-solid phase transition have been discerned.


1990 ◽  
Vol 45 (2) ◽  
pp. 102-106
Author(s):  
K. Ganesan ◽  
R. Damle ◽  
J. Ramakrishna

AbstractThe proton spin-lattice relaxation time T1 (at 5.4, 10 and 15 MHz) and second moment M2 (at 9.8 MHz) have been measured in hydrazinium Perchlorate (N2H5ClO4). The temperature dependence of T, shows two minima. The low temperature T, minimum has been explained in terms of NH3 reorientation about the N-N axis while the high temperature minimum is attributed to the exchange of protons within the NH2 group (180° flip about the H - N - H bisectrix). The activation energies for NH3 and NH: motions are found to be 20.5 kJ mol-1 and 39.8 kJ mol-1 , respectively. The second moment variation with temperature shows two transitions around 120 K and 210 K and has been discussed in terms of NH3/NH2 motions.


2003 ◽  
Vol 792 ◽  
Author(s):  
Se Hun Kim ◽  
Kyu Won Lee ◽  
Jae Won Jang ◽  
Cheol Eui Lee

ABSTRACTWe have investigated proton beam irradiation effects on TlH2PO4 (TDP) showing an antiferroelectric phase transition and a ferroelastic phase transition. The sample was irradiated by 1 MeV proton beams to a dose of 1015 ions/cm2 and studied by means of 1H NMR measurements. The NMR rotating-frame spin-lattice relaxation time was measured as a function of temperature, and analyzed in order to understand the proton motions and the order parameter reflecting the structural changes caused by the proton irradiation.


1996 ◽  
Vol 74 (7) ◽  
pp. 1309-1320 ◽  
Author(s):  
Melvin J. Farquharson ◽  
J. Stephen Hartman

The adducts pyr•BF2Br and pyr•BFBr2 (pyr = pyridine) form fluoroboron cations by displacement of Br− by excess pyridine, the ease of cation formation being pyr2BF2+ » pyr2BFBr+ » pyr3BF2+•Cl− can be displaced from pyr•BF2Cl and pyr•BFCl2, but much less readily, to form pyr2BF2+, pyr2BFCl+, and, under forcing conditions, a few percent of pyr3BF2+. Non-fluorine-containing mixed boron trihalide adducts of pyridine also form haloboron cations by heaviest-halide-ion displacement, for example pyr•BClI2 giving pyr2BClI+, the ease of displacement always being I− > Br− > Cl−, and displacement always occurring more readily from mixed boron trihalide adducts than from unmixed-halogen adducts. The mechanistic implications of this are discussed. ortho Substituents greatly reduce the ability of pyridine to displace heavy halide ion, so 2-methylpyridine gives 2-Mepyr2BF2+ and 2-Mepyr2BFBr+ but not 2-Mepyr2BFCl+ or 2-Mepyr3BF2+, while 2,6-dimethylpyridine does not form any haloboron cations. 19F spin-lattice relaxation times of the fluoroboron cations are much shorter than those of neutral boron trihalide adducts in the same solution, and provide a further diagnostic test for their presence. Key words: fluoroboron cations, pyridines, mixed boron trihalide adducts, fluorine-19 NMR, boron-11 NMR.


Sign in / Sign up

Export Citation Format

Share Document