scholarly journals Preparation and radiation attenuation properties of ceramic ball clay enhanced with micro and nano ZnO particles

Author(s):  
Yas Al-Hadeethi ◽  
M.I. Sayeed ◽  
Abeer Z. Barasheed ◽  
Ahmed Moustafa ◽  
M. Elsafi
2019 ◽  
Vol 56 (3) ◽  
pp. 652-656
Author(s):  
Raul Chioibas ◽  
Florin Borcan ◽  
Ovidiu Mederle ◽  
Dana Stoian ◽  
Codruta Marinela Soica

Zinc oxide (ZnO) is an inorganic compound used for its antiseptic and skin healing properties. It is an excellent protective filter against UV radiation and it can be used as white pigment in pharmaceutical preparations. In this study, nano-ZnO particles were obtained by ultrasound treatment, and respectively by repeated freezing/heating process. The influence of synthesis method and of ultrasound generator parameters on the particles size and stability was observed. The results reveal that were obtained samples with a very good stability and sizes between 15 and 96 nm. It was found that synthesis based on ultrasound treatment lead to the formation of nanoparticles with lower sizes.


Author(s):  
Xiaoguang Zhang ◽  
Xuexing Chen ◽  
Qingchun Chen ◽  
Zhaolong Deng ◽  
Yan Liu ◽  
...  

A series of nanofiltration membranes were prepared by interfacial polymerization of piperazine and terephthaloyl chloride on the surface of polyacrylonitrile (PAN) ultrafiltration membranes. ZnO nanoparticles were incorporated in the active separation layer to modify the performances of the membranes. The preparation conditions as the monomer concentration, dosage of nano-ZnO particles and the reaction time on removal of a simulated radioactive nuclide Co (II) were investigated. Fourier transform infrared in attenuated total reflection mode verified the formation of polyamide on the PAN ultrafiltration membrane. The scanning electron microscope images showed that the nano-ZnO particles can homogeneously fixed on the membrane surface. The retention of Co (II) increased with increasing the dosage of nano-ZnO in the range of 0∼0.03 g. Further adding more nano-ZnO, the rejection rate of Co (II) first decreased and then increased. The concentration of piperazine and terephthaloyl chloride showed similar effect on removal of Co (II) ion. 5 minutes polymerization time was sufficient to form an active separation layer on the substrate membrane which changed the separation mechanism from ultrafiltration to nanofiltration. The separation performance of NF3 prepared by the following conditions was optimum: 0.03g nano-ZnO, 0.6 wt% piperazine, 0.5 wt% terephthaloyl chloride, and the reaction time was 15 min. The rejection rates of 1000 mg/L Na2SO4 and Co2+ in CoCl2 solution were 90% and 75% respectively. The Co (II) removal rate can be increased to nearly 90% by using ethylenediaminetetraacetic acid disodium salt. Increasing the operation pressure or the feeding concentration of Co (II) can also improve the performances of the membranes in this experiment.


Sign in / Sign up

Export Citation Format

Share Document