Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field

Author(s):  
Xin Liu ◽  
Sansan Shuai ◽  
Chenglin Huang ◽  
Shijun Wu ◽  
Tao Hu ◽  
...  
2014 ◽  
Vol 1004-1005 ◽  
pp. 123-126 ◽  
Author(s):  
Jian Yin ◽  
Xiu Jun Ma ◽  
Jun Ping Yao ◽  
Zhi Jian Zhou

Effect of pulsed magnetic field treatment on the microstructure and mechanical properties of Mg97Y2Zn1 alloy has been investigated. When the pulsed magnetic field is applied on the alloy in semi-solid state, the α-Mg was modified from developed dendrite to fine rosette, resulting in a refined solidification microstructure with the grain size decreased from 4 mm to 0.5 mm. The volume fraction of the second phase ( X phase) increased by about 10 %. The yield strength, fracture strength and plasticity were improved by 21 MPa, 38 MPa and 2.4 %, respectively. The improvement of mechanical properties was attributed to the refined grain size and increased volume fraction of X phase.


2020 ◽  
Vol 993 ◽  
pp. 161-165
Author(s):  
Yi Zhang ◽  
Xiao Hui Feng ◽  
Yuan Sheng Yang

The effect of Ca on the microstructure and mechanical properties of directionally solidified (DSed) Mg-3Zn-xCa alloys (x=0.2,0.5,0.8wt.%) was investigated in the present work. The results showed that the DSed samples with the growth rate of 120 μm/s had columnar dendritic structures and the primary dendritic arm spacing (PDAS) decreased with the content of Ca increase. The TEM result indicated that the growth orientation of the DSed Mg-Zn-xCa alloys was , which was independent of the content of Ca. The tensile tests at room temperature showed that the mechanical properties of the DSed Mg-Zn-xCa alloys were strongly affected by the content of Ca. The addition of Ca remarkably improved the ultimate tensile strength (UTS) and the yield strength (YS), while dramatically reduced the elongation (El). Prismatic slip and twinning were the main deformation mechanisms in tensile tests.


Sign in / Sign up

Export Citation Format

Share Document