Effect of Ca on Microstructure and Mechanical Properties of Directionally Solidified Mg-Zn-Ca Alloys

2020 ◽  
Vol 993 ◽  
pp. 161-165
Author(s):  
Yi Zhang ◽  
Xiao Hui Feng ◽  
Yuan Sheng Yang

The effect of Ca on the microstructure and mechanical properties of directionally solidified (DSed) Mg-3Zn-xCa alloys (x=0.2,0.5,0.8wt.%) was investigated in the present work. The results showed that the DSed samples with the growth rate of 120 μm/s had columnar dendritic structures and the primary dendritic arm spacing (PDAS) decreased with the content of Ca increase. The TEM result indicated that the growth orientation of the DSed Mg-Zn-xCa alloys was , which was independent of the content of Ca. The tensile tests at room temperature showed that the mechanical properties of the DSed Mg-Zn-xCa alloys were strongly affected by the content of Ca. The addition of Ca remarkably improved the ultimate tensile strength (UTS) and the yield strength (YS), while dramatically reduced the elongation (El). Prismatic slip and twinning were the main deformation mechanisms in tensile tests.

2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.


2007 ◽  
Vol 560 ◽  
pp. 29-34 ◽  
Author(s):  
Emmanuel Gutiérrez C. ◽  
Armando Salinas-Rodríguez ◽  
Enrique Nava-Vázquez

The effects of heating rate and annealing temperature on the microstructure and mechanical properties of cold rolled Al-Si, low C non-oriented electrical steels are investigated using SEM metallography and uniaxial tensile tests. The experimental results show that short term annealing at temperatures up to 850 °C result in microstructures consisting of recrystallized ferrite grains with sizes similar to those observed in industrial semi-processed strips subjected to long term batch annealing treatments. Within the temperature range investigated, the grain size increases and the 0.2% offset yield strength decreases with increasing temperature. It was observed that the rate of change of grain size with increasing temperature increases when annealing is performed at temperatures greater than Ac1 (~870 °C). This effect is attributed to Fe3C dissolution and rapid C segregation to austenite for annealing temperatures within the ferrite+austenite phase field. This leads to faster ferrite growth and formation of pearlite when the steel is finally cooled to room temperature. The presence of pearlite at room temperature decreases the ductility of samples annealed at T > Ac1.


2020 ◽  
Vol 993 ◽  
pp. 351-357
Author(s):  
Ming Yu Zhao ◽  
Xiao Yun Song ◽  
Wen Jing Zhang ◽  
Yu Wei Diao ◽  
Wen Jun Ye ◽  
...  

The Ti-6.5Al-2Sn-4Zr-1.5Mo-2Nb-0.25Fe-0.2Si (wt%) alloy is a novel two-phase high temperature alloy for short-term application. The effects of different heat treatments on the microstructure and mechanical properties were investigated through electron probe microanalysis (EPMA), optical microcopy (OM), scanning electron microscope (SEM), electron backscattered diffraction (EBSD) and tensile tests at room temperature and 650°C. Subjected to the annealing treatment at α+β region (1010 °C/2 h, FC to 990 °C+990 °C/2 h, AC), the microstructure was composed of bimodal structure, which consists of equiaxed primary α (αp) phase and lamellar transformed β (βt) structure. As a strong β stabilizer, the content of Fe in α phase is much less than that in β phase. Annealing at β region (1040 °C/2 h, AC) resulted in the formation of widmannstatten structure, consisting of coarse raw β grain and secondary α phase precipitated on the β grain. With respect to the tensile property, different heat-treated alloys obtained similar strength. However, widmannstatten structure was characterized by lower plasticity, with the elongation only half that of bimodal structure. The fracture characteristics at room temperature for the alloy with bimodal structure and widmannstatten structure are dominated by ductile fracture and cleavage fracture, respectively.


2014 ◽  
Vol 1035 ◽  
pp. 303-306
Author(s):  
Xiao Ya Chen ◽  
Quan An Li ◽  
Qing Zhang ◽  
Jun Chen ◽  
Hui Zhen Jiang

The microstructure and mechanical properties of Mg-6Al-1Zn-0.9Y-1.8Gd alloy have been studied by micro-analysis and tensile tests. The results showed that the alloy mainly consists of Mg matrix, Al2Y, Mg17Al12and Al2Gd. The best tensile strength of the alloy was 255 Mpa at room temperature, and the alloy still had the very high mechanical property at high temperature.


2017 ◽  
Vol 62 (2) ◽  
pp. 643-651 ◽  
Author(s):  
A. Morri ◽  
L. Ceschini ◽  
M. Pellizzari ◽  
C. Menapace ◽  
F. Vettore ◽  
...  

AbstractThe effect of austempering parameters on the microstructure and mechanical properties of 27MnCrB5-2 steel has been investigated by means of: dilatometric, microstructural and fractographic analyses; tensile and Charpy V-notch (CVN) impact tests at room temperature and a low temperature.Microstructural analyses showed that upper bainite developed at a higher austempering temperature, while a mixed bainitic-martensitic microstructure formed at lower temperatures, with a different amount of bainite and martensite and a different size of bainite sheaf depending on the temperature. Tensile tests highlighted superior yield and tensile strengths (≈30%) for the mixed microstructure, with respect to both fully bainitic and Q&T microstructures, with only a low reduction in elongation to failure (≈10%). Impact tests confirmed that mixed microstructures have higher impact properties, at both room temperature and a low temperature.


2010 ◽  
Vol 152-153 ◽  
pp. 197-201 ◽  
Author(s):  
Qing Zhang ◽  
Quan An Li ◽  
Xiao Tian Jing ◽  
Xing Yuan Zhang

The effects of yttrium on the microstructure and mechanical properties of magnesium alloy AZ81 have been investigated by alloy preparation, microstructure analysis and tensile tests. The results show that proper content of yttrium addition can obviously refine the microstructure of magnesium alloy AZ81, reduce the amount of β-Mg17Al12 phase, lead to the precipitation of Al2Y phase and improve the mechanical properties. After solid solution and aging treatment, the tensile strength and elongation of the alloy increase at first and then decrease with the increase of yttrium content, and reach the maxima at 2%Y. At room temperature, the maxima are 277MPa and 10.9% respectively. At 150 , the maxima are 220MPa and 12.4% respectively.


2013 ◽  
Vol 750-752 ◽  
pp. 611-614
Author(s):  
Zhi Chen ◽  
Quan An Li ◽  
Wen Jian Liu ◽  
Xiao Jie Song

The Mg-12Gd-2Y-2Sm-0.5Zr (wt.%) alloy was prepared by induction melting. After solution and aging treatment, the microstructure and mechanical properties of alloy was investigated by optical microscope, XRD and tensile tests. The results show that the aged alloy is mainly composed by α-Mg matrix, Mg24Y5 and Mg5Gd phase, and these precipitated phases distribute in the grain dispersively. The mechanical properties of alloy were tested at room temperature and 200-300°C.


2015 ◽  
Vol 816 ◽  
pp. 804-809 ◽  
Author(s):  
Xiao Yun Song ◽  
Yong Ling Wang ◽  
Wen Jing Zhang ◽  
Song Xiao Hui ◽  
Wen Jun Ye

The effects of different duplex annealing treatments on the microstructure and mechanical properties of Ti62421S alloy plate were studied by optical microscope (OM), scanning electron microscope (SEM), electron probe microanalysis (EPMA) and tensile tests, The experimental results indicated that the original microstructure of Ti62421S was composed of primary α phase (αp) and intergranular β phase. With the increase of first-stage annealing temperature, the volume fraction of equiaxed αp phase decreased. In contrast, the content of transformed β structure (βt) increased, and the width of lamellar secondary α phase (αs) in βt increased. Consequently, the yield strength (σ0.2) and ultimate tensile strength (σb) at room temperature and 600°C increased, while the elongation (δ5) declined. After 1000°C/2h/AC+ 600°C/2h/AC duplex annealing treatment, Ti62421S alloy plate showed superior tensile properties. The values of σb and δ5 at room temperature reached 1133MPa and 6%, as well as the value of σb at 600°C exceeded 710MPa.


2007 ◽  
Vol 539-543 ◽  
pp. 3690-3695 ◽  
Author(s):  
X.P. Guo ◽  
L.M. Gao ◽  
Ping Guan ◽  
K. Kusabiraki ◽  
Heng Zhi Fu

The microstructure and mechanical properties including room temperature fracture toughness Kq, tensile strengthσb and elongationδ at 1250°C of the Nb based alloy directionally solidified in an electron beam floating zone melting (EBFZM) furnace have been evaluated. The microstructure is primarily composed of Nb solid solution (Nbss), α-(Nb)5Si3 and (Nb)3Si phases. After directional solidification with the moving rate of electron beam gun R being respectively 2.4, 4.8 and 7.2 mm/min, the primary Nbss dendrites, Nbss + (Nb)5Si3/(Nb)3Si eutectic colonies (lamellar or rod-like) and divorced Nb silicide plates align along the longitudinal axes of the specimens. When R = 2.4 mm/min, the best directional microstructure is obtained. Directional solidification has significantly improved theσb at 1250°C and Kq. The maximumσb occurs for the specimens with R = 2.4 mm/min and is about 85.0 MPa, meanwhile, the Kq is about 19.4 MPam1/2.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 572
Author(s):  
Qingqing Ding ◽  
Hongbin Bei ◽  
Xinbao Zhao ◽  
Yanfei Gao ◽  
Ze Zhang

A second-generation Ni-based superalloy has been directionally solidified by using a Bridgman method, and the key processing steps have been investigated with a focus on their effects on microstructure evolution and mechanical properties. The as-grown microstructure is of a typical dendrite structure with microscopic elemental segregation during solidification. Based on the microstructural evidence and the measured phase transformation temperatures, a step-wise solution treatment procedure is designed to effectively eliminate the compositional and microstructural inhomogeneities. Consequently, the homogenized microstructure consisting of γ/γ′ phases (size of γ′ cube is ~400 nm) have been successfully produced after a two-step (solid solution and aging) treatment. The mechanical properties of the resulting alloys with desirable microstructures at room and elevated temperatures are measured by tensile tests. The strength of the alloy is comparable to commercial monocrystalline superalloys, such as DD6 and CMSX-4. The fracture modes of the alloy at various temperatures have also been studied and the corresponding deformation mechanisms are discussed.


Sign in / Sign up

Export Citation Format

Share Document