Adopting elitism-based Genetic Algorithm for minimizing multi-objective problems of IoT service placement in fog computing environment

Author(s):  
B.V. Natesha ◽  
Ram Mohana Reddy Guddeti
2020 ◽  
Vol 11 (4) ◽  
pp. 17-30
Author(s):  
Shefali Varshney ◽  
Rajinder Sandhu ◽  
P. K. Gupta

Application placement in the fog environment is becoming one of the major challenges because of its distributed, hierarchical, and heterogeneous nature. Also, user expectations and various features of IoT devices further increase the complexity of the problem for the placement of applications in the fog computing environment. Therefore, to improve the QoE of various end-users for the use of various system services, proper placement of applications in the fog computing environment plays an important role. In this paper, the authors have proposed a service placement methodology for the fog computing environment. For a better selection of application services, AHP technique has been used which provides results in the form of ranks. The performance evaluation of the proposed technique has been done by using a customized testbed that considers the parameters like CPU cycle, storage, maximum latency, processing speed, and network bandwidth. Experimental results obtained for the proposed methodology improved the efficiency of the fog network.


2021 ◽  
Vol 7 ◽  
pp. e588
Author(s):  
Olena Skarlat ◽  
Stefan Schulte

Recently, a multitude of conceptual architectures and theoretical foundations for fog computing have been proposed. Despite this, there is still a lack of concrete frameworks to setup real-world fog landscapes. In this work, we design and implement the fog computing framework FogFrame—a system able to manage and monitor edge and cloud resources in fog landscapes and to execute Internet of Things (IoT) applications. FogFrame provides communication and interaction as well as application management within a fog landscape, namely, decentralized service placement, deployment and execution. For service placement, we formalize a system model, define an objective function and constraints, and solve the problem implementing a greedy algorithm and a genetic algorithm. The framework is evaluated with regard to Quality of Service parameters of IoT applications and the utilization of fog resources using a real-world operational testbed. The evaluation shows that the service placement is adapted according to the demand and the available resources in the fog landscape. The greedy placement leads to the maximum utilization of edge devices keeping at the edge as many services as possible, while the placement based on the genetic algorithm keeps devices from overloads by balancing between the cloud and edge. When comparing edge and cloud deployment, the service deployment time at the edge takes 14% of the deployment time in the cloud. If fog resources are utilized at maximum capacity, and a new application request arrives with the need of certain sensor equipment, service deployment becomes impossible, and the application needs to be delegated to other fog resources. The genetic algorithm allows to better accommodate new applications and keep the utilization of edge devices at about 50% CPU. During the experiments, the framework successfully reacts to runtime events: (i) services are recovered when devices disappear from the fog landscape; (ii) cloud resources and highly utilized devices are released by migrating services to new devices; (iii) and in case of overloads, services are migrated in order to release resources.


2021 ◽  
Vol 6 ◽  
pp. 100156
Author(s):  
John Oche Onah ◽  
Shafi’i Muhammad Abdulhamid ◽  
Mohammed Abdullahi ◽  
Ibrahim Hayatu Hassan ◽  
Abdullah Al-Ghusham

Sign in / Sign up

Export Citation Format

Share Document