scholarly journals FogFrame: a framework for IoT application execution in the fog

2021 ◽  
Vol 7 ◽  
pp. e588
Author(s):  
Olena Skarlat ◽  
Stefan Schulte

Recently, a multitude of conceptual architectures and theoretical foundations for fog computing have been proposed. Despite this, there is still a lack of concrete frameworks to setup real-world fog landscapes. In this work, we design and implement the fog computing framework FogFrame—a system able to manage and monitor edge and cloud resources in fog landscapes and to execute Internet of Things (IoT) applications. FogFrame provides communication and interaction as well as application management within a fog landscape, namely, decentralized service placement, deployment and execution. For service placement, we formalize a system model, define an objective function and constraints, and solve the problem implementing a greedy algorithm and a genetic algorithm. The framework is evaluated with regard to Quality of Service parameters of IoT applications and the utilization of fog resources using a real-world operational testbed. The evaluation shows that the service placement is adapted according to the demand and the available resources in the fog landscape. The greedy placement leads to the maximum utilization of edge devices keeping at the edge as many services as possible, while the placement based on the genetic algorithm keeps devices from overloads by balancing between the cloud and edge. When comparing edge and cloud deployment, the service deployment time at the edge takes 14% of the deployment time in the cloud. If fog resources are utilized at maximum capacity, and a new application request arrives with the need of certain sensor equipment, service deployment becomes impossible, and the application needs to be delegated to other fog resources. The genetic algorithm allows to better accommodate new applications and keep the utilization of edge devices at about 50% CPU. During the experiments, the framework successfully reacts to runtime events: (i) services are recovered when devices disappear from the fog landscape; (ii) cloud resources and highly utilized devices are released by migrating services to new devices; (iii) and in case of overloads, services are migrated in order to release resources.

Author(s):  
Prasenjit Maiti ◽  
Bibhudatta Sahoo ◽  
Ashok Kumar Turuk

Fog Computing extends storage and computation resources closer to end-devices. In several cases, the Internet of Things (IoT) applications that are time-sensitive require low response time. Thus, reducing the latency in IoT networks is one of the essential tasks. To this end, fog computing is developed with a motive for the data production and consumption to always be within proximity; therefore, the fog nodes must be placed at the edge of the network, which is near the end devices, such that the latency is minimized. The optimal location selection for fog node placement within a network out of a very large number of possibilities, such as minimize latency, is a challenging problem. So, it is a combinatorial optimization problem. Hard combinatorial optimization problems (NP-hard) involve huge discrete search spaces. The fog node placement problem is an NP-hard problem. NP-hard problems are often addressed by using heuristic methods and approximation algorithms. Combinatorial optimization problems can be viewed as searching for the best element of some set of discrete items; therefore in principle, any metaheuristic can be used to solve them. To resolve this, meta-heuristic-based methods is proposed. We apply the Simulated Annealing (SA), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) technique to design fog node placement algorithms. Genetic Algorithm is observed to give better solutions. Since Genetic Algorithm may get stuck in local optima, Hybrid Genetic Algorithm, and Simulated Annealing (GA-SA), Hybrid Genetic Algorithm and Particle Swarm Optimization (GA-PSO) were compared with GA. By extensive simulations, it is observed that hybrid GA-SA-based for node placement algorithm outperforms other baseline algorithms in terms of response time for the IoT applications.


Author(s):  
Simar Preet Singh ◽  
Rajesh Kumar ◽  
Anju Sharma ◽  
S. Raji Reddy ◽  
Priyanka Vashisht

Background: Fog computing paradigm has recently emerged and gained higher attention in present era of Internet of Things. The growth of large number of devices all around, leads to the situation of flow of packets everywhere on the Internet. To overcome this situation and to provide computations at network edge, fog computing is the need of present time that enhances traffic management and avoids critical situations of jam, congestion etc. Methods: For research purposes, there are many methods to implement the scenarios of fog computing i.e. real-time implementation, implementation using emulators, implementation using simulators etc. The present study aims to describe the various simulation and emulation tools for implementing fog computing scenarios. Results: Review shows that iFogSim is the simulator that most of the researchers use in their research work. Among emulators, EmuFog is being used at higher pace than other available emulators. This might be due to ease of implementation and user-friendly nature of these tools and language these tools are based upon. The use of such tools enhance better research experience and leads to improved quality of service parameters (like bandwidth, network, security etc.). Conclusion: There are many fog computing simulators/emulators based on many different platforms that uses different programming languages. The paper concludes that the two main simulation and emulation tools in the area of fog computing are iFogSim and EmuFog. Accessibility of these simulation/emulation tools enhance better research experience and leads to improved quality of service parameters along with the ease of their usage.


Author(s):  
Ambigavathi Munusamy ◽  
Mainak Adhikari ◽  
Venki Balasubramanian ◽  
Mohammad Ayoub Khan ◽  
Varun G Menon ◽  
...  

Author(s):  
Karan Bajaj ◽  
Bhisham Sharma ◽  
Raman Singh

AbstractThe Internet of Things (IoT) applications and services are increasingly becoming a part of daily life; from smart homes to smart cities, industry, agriculture, it is penetrating practically in every domain. Data collected over the IoT applications, mostly through the sensors connected over the devices, and with the increasing demand, it is not possible to process all the data on the devices itself. The data collected by the device sensors are in vast amount and require high-speed computation and processing, which demand advanced resources. Various applications and services that are crucial require meeting multiple performance parameters like time-sensitivity and energy efficiency, computation offloading framework comes into play to meet these performance parameters and extreme computation requirements. Computation or data offloading tasks to nearby devices or the fog or cloud structure can aid in achieving the resource requirements of IoT applications. In this paper, the role of context or situation to perform the offloading is studied and drawn to a conclusion, that to meet the performance requirements of IoT enabled services, context-based offloading can play a crucial role. Some of the existing frameworks EMCO, MobiCOP-IoT, Autonomic Management Framework, CSOS, Fog Computing Framework, based on their novelty and optimum performance are taken for implementation analysis and compared with the MAUI, AnyRun Computing (ARC), AutoScaler, Edge computing and Context-Sensitive Model for Offloading System (CoSMOS) frameworks. Based on the study of drawn results and limitations of the existing frameworks, future directions under offloading scenarios are discussed.


2015 ◽  
Vol 21 (S4) ◽  
pp. 218-223 ◽  
Author(s):  
D. Dowsett

AbstractTwo techniques for use with SIMION [1] are presented, boundary matching and genetic optimization. The first allows systems which were previously difficult or impossible to simulate in SIMION to be simulated with great accuracy. The second allows any system to be rapidly and robustly optimized using a parallelized genetic algorithm. Each method will be described along with examples of real world applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2975
Author(s):  
Long Liu ◽  
Xinge Guo ◽  
Weixin Liu ◽  
Chengkuo Lee

With the fast development of energy harvesting technology, micro-nano or scale-up energy harvesters have been proposed to allow sensors or internet of things (IoT) applications with self-powered or self-sustained capabilities. Facilitation within smart homes, manipulators in industries and monitoring systems in natural settings are all moving toward intellectually adaptable and energy-saving advances by converting distributed energies across diverse situations. The updated developments of major applications powered by improved energy harvesters are highlighted in this review. To begin, we study the evolution of energy harvesting technologies from fundamentals to various materials. Secondly, self-powered sensors and self-sustained IoT applications are discussed regarding current strategies for energy harvesting and sensing. Third, subdivided classifications investigate typical and new applications for smart homes, gas sensing, human monitoring, robotics, transportation, blue energy, aircraft, and aerospace. Lastly, the prospects of smart cities in the 5G era are discussed and summarized, along with research and application directions that have emerged.


Sign in / Sign up

Export Citation Format

Share Document