QoE-Based Multi-Criteria Decision Making for Resource Provisioning in Fog Computing Using AHP Technique

2020 ◽  
Vol 11 (4) ◽  
pp. 17-30
Author(s):  
Shefali Varshney ◽  
Rajinder Sandhu ◽  
P. K. Gupta

Application placement in the fog environment is becoming one of the major challenges because of its distributed, hierarchical, and heterogeneous nature. Also, user expectations and various features of IoT devices further increase the complexity of the problem for the placement of applications in the fog computing environment. Therefore, to improve the QoE of various end-users for the use of various system services, proper placement of applications in the fog computing environment plays an important role. In this paper, the authors have proposed a service placement methodology for the fog computing environment. For a better selection of application services, AHP technique has been used which provides results in the form of ranks. The performance evaluation of the proposed technique has been done by using a customized testbed that considers the parameters like CPU cycle, storage, maximum latency, processing speed, and network bandwidth. Experimental results obtained for the proposed methodology improved the efficiency of the fog network.

Author(s):  
Shanthi Thangam Manukumar ◽  
Vijayalakshmi Muthuswamy

With the development of edge devices and mobile devices, the authenticated fast access for the networks is necessary and important. To make the edge and mobile devices smart, fast, and for the better quality of service (QoS), fog computing is an efficient way. Fog computing is providing the way for resource provisioning, service providers, high response time, and the best solution for mobile network traffic. In this chapter, the proposed method is for handling the fog resource management using efficient offloading mechanism. Offloading is done based on machine learning prediction technology and also by using the KNN algorithm to identify the nearest fog nodes to offload. The proposed method minimizes the energy consumption, latency and improves the QoS for edge devices, IoT devices, and mobile devices.


2021 ◽  
Vol 18 (22) ◽  
pp. 413
Author(s):  
Ismail Zaharaddeen Yakubu ◽  
Lele Muhammed ◽  
Zainab Aliyu Musa ◽  
Zakari Idris Matinja ◽  
Ilya Musa Adamu

Cloud high latency limitation has necessitated the introduction of Fog computing paradigm that extends computing infrastructures in the cloud data centers to the edge network. Extended cloud resources provide processing, storage and network services to time sensitive request associated to the Internet of Things (IoT) services in network edge. The rapid increase in adoption of IoT devices, variations in user requirements, limited processing and storage capacity of fog resources and problem of fog resources over saturation has made provisioning and allotment of computing resources in fog environment a formidable task. Satisfying application and request deadline is the most substantial challenge compared to other dynamic variations in parameters of client requirements. To curtail these issues, the integrated fog-cloud computing environment and efficient resource selection method is highly required. This paper proposed an agent based dynamic resource allocation that employs the use of host agent to analyze the QoSrequirements of application and request and select a suitable execution layer. The host agent forwards the application request to a layer agent which is responsible for the allocation of best resource that satisfies the requirement of the application request. Host agent and layers agents maintains resource information tables for matching of task and computing resources. CloudSim toolkit functionalities were extended to simulate a realistic fog environment where the proposed method is evaluated. The experimental results proved that the proposed method performs better in terms of processing time, latency and percentage QoS delivery. HIGHLIGHTS The distance between the cloud infrastructure and the edge IoT devices makes the cloud not too competent for some IoT applications, especially the sensitive ones To minimize the latency in the cloud and ensure prompt response to user requests, Fog computing, which extends the cloud services to edge network was introduced The proliferation in adoption of IoT devices and fog resource limitations has made resource scheduling in fog computing a tedious one GRAPHICAL ABSTRACT


Sign in / Sign up

Export Citation Format

Share Document