scholarly journals A context-aware information-based clone node attack detection scheme in Internet of Things

Author(s):  
Khizar Hameed ◽  
Saurabh Garg ◽  
Muhammad Bilal Amin ◽  
Byeong Kang ◽  
Abid Khan
2019 ◽  
Vol 32 (15) ◽  
pp. e4024 ◽  
Author(s):  
Mohammad Wazid ◽  
Poonam Reshma Dsouza ◽  
Ashok Kumar Das ◽  
Vivekananda Bhat K ◽  
Neeraj Kumar ◽  
...  

2021 ◽  
Vol 19 (2) ◽  
pp. 1280-1303
Author(s):  
Jiushuang Wang ◽  
◽  
Ying Liu ◽  
Huifen Feng

<abstract><p>Network security has become considerably essential because of the expansion of internet of things (IoT) devices. One of the greatest hazards of today's networks is distributed denial of service (DDoS) attacks, which could destroy critical network services. Recent numerous IoT devices are unsuspectingly attacked by DDoS. To securely manage IoT equipment, researchers have introduced software-defined networks (SDN). Therefore, we propose a DDoS attack detection scheme to secure the real-time in the software-defined the internet of things (SD-IoT) environment. In this article, we utilize improved firefly algorithm to optimize the convolutional neural network (CNN), to provide detection for DDoS attacks in our proposed SD-IoT framework. Our results demonstrate that our scheme can achieve higher than 99% DDoS behavior and benign traffic detection accuracy.</p></abstract>


Author(s):  
Mohamed A. Amasha ◽  
Marwa F. Areed ◽  
Salem Alkhalaf ◽  
Rania A. Abougalala ◽  
Safaa M. Elatawy ◽  
...  

Author(s):  
Shanshan Yu ◽  
Jicheng Zhang ◽  
Ju Liu ◽  
Xiaoqing Zhang ◽  
Yafeng Li ◽  
...  

AbstractIn order to solve the problem of distributed denial of service (DDoS) attack detection in software-defined network, we proposed a cooperative DDoS attack detection scheme based on entropy and ensemble learning. This method sets up a coarse-grained preliminary detection module based on entropy in the edge switch to monitor the network status in real time and report to the controller if any abnormality is found. Simultaneously, a fine-grained precise attack detection module is designed in the controller, and a ensemble learning-based algorithm is utilized to further identify abnormal traffic accurately. In this framework, the idle computing capability of edge switches is fully utilized with the design idea of edge computing to offload part of the detection task from the control plane to the data plane innovatively. Simulation results of two common DDoS attack methods, ICMP and SYN, show that the system can effectively detect DDoS attacks and greatly reduce the southbound communication overhead and the burden of the controller as well as the detection delay of the attacks.


2014 ◽  
Vol 701-702 ◽  
pp. 957-960
Author(s):  
Feng Xie

The equipment maintenance in large marine ships may rely on Internet of Things to provide monitoring of equipment status instantly. The data volume of sensing data is huge as the number of equipments is large. It is critical to decrease the communication overhead of uploading sensing data for efficiently and timely monitoring. In this paper, we propose several coding algorithms by using data context that is modeled by our normal forms on the base of our observations. The communication efficiency is improved, which is justified by formal analysis and rigorous proof. We also propose several network plan policies for further improvement of the communication efficiency by using data context and cluster head deployment.


Sign in / Sign up

Export Citation Format

Share Document